General-purpose Enclosed
 Switches with High Breaking Capacity and High Durability

- Z General-purpose Basic Switches are built into ZE, ZV, and ZV2 Switches. They provided high durability and high breaking capacity.
- X Basic Switches with magnetic blowout are built into XE, XV, and XV2 Switches. DC models have also been added to the series.
- Three mounting methods (side, base, and diagonal side) and many types of actuator are available.
- Terminals face the front when the cover is removed for easy connection.
- Switches with ground terminals have CE marking.
- Approved by UL, CSA, and CCC (Chinese standard). (Ask your OMRON representative for information on approved models.)

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

Be sure to read Safety Precautions on page 8 to 9 and
Safety Precautions for All Limit Switches.

Model Number Structure

Model Number Legend (Not all combinations are possible. Ask your OMRON representative for details.)
$\square \square$ - \square-2 \square
$\overline{(1)} \overline{(2)} \overline{(3)} \quad \overline{(4)}$
(1) Built-in Switch

Z	$:$ SPDT (AC)
X	SPDT (DC)

(2) Mounting Direction

E : Side mounting
V : Base mounting
V2 : Diagonal side mounting

(3) Actuator

Q : Plunger
Q22 : Roller plunger
Q21 : Crossroller plunger
QA2 : Roller arm lever
QA277 : One-way action roller arm lever
N : Sealed plunger
N22 : Sealed roller plunger (ZE, ZV, ZV2 only)
N21 : Sealed crossroller plunger (ZE, ZV, ZV2 only)
NA2 : Sealed roller arm lever
NA277 : Sealed one-way action roller arm lever

(4) Conduit/Ground Terminal *

None : G 1/2/without ground terminal
G1 : G $1 / 2 /$ with ground terminal
G : Pg13.5/with ground terminal
SG1: 1/2-14NPSM/with ground terminal
YG1 : M20/with ground terminal
S : 1/2-14NPSM/without ground terminal
Y : M20/without ground terminal

[^0] models.

Ordering Information

		nting				Base 5			Diagonal s ©		
Actuator			Model	$\mathbf{A p}$ star	ved ards	Model		ved ards	Model		ved ards
				UL	CSA		UL	CSA		UL	CSA
		AC	ZE-Q-2	\bullet	\bullet	ZV-Q-2	\bullet	\bullet	ZV2-Q-2	\bullet	\bullet
	Pr	DC	XE-Q-2			XV-Q-2			XV2-Q-2		
		AC	ZE-Q22-2	\bullet	\bullet	ZV-Q22-2	\bullet	\bullet	ZV2-Q22-2	\bullet	\bullet
	Roller plunger	DC	XE-Q22-2			XV-Q22-2			XV2-Q22-2		
General		AC	ZE-Q21-2	-	-	ZV-Q21-2	-	-	ZV2-Q21-2	\bullet	\bullet
purpose		DC	XE-Q21-2			XV-Q21-2			---		
	Roller arm lever	AC	ZE-QA2-2	\bullet	\bullet	ZV-QA2-2	-	-	ZV2-QA2-2	\bullet	\bullet
	Roll	DC	XE-QA2-2			XV-QA2-2			XV2-QA2-2		
	One-way action roller \rightarrow ¢	AC	ZE-QA277-2	\bullet	\bullet	--			ZV2-QA277-2	\bullet	\bullet
	arm lever	DC	XE-QA277-2			--			---		
		AC	ZE-N-2	-	-	ZV-N-2	-	-	ZV2-N-2	\bullet	\bullet
	plunger	DC	XE-N-2			XV-N-2			XV2-N-2		
	Sealed roller plunger	AC	ZE-N22-2	\bullet	\bullet	ZV-N22-2	\bullet	\bullet	ZV2-N22-2	\bullet	\bullet
Sealed (Booted)	Sealed crossroller plunger	AC	ZE-N21-2	\bullet	\bullet	ZV-N21-2	\bullet	\bullet	ZV2-N21-2	\bullet	\bullet
		AC	ZE-NA2-2	\bullet	\bullet	ZV-NA2-2	\bullet	-	ZV2-NA2-2	\bullet	\bullet
	Sealed roller arm lever	DC	XE-NA2-2			XV-NA2-2			XV2-NA2-2		
	One-way action \rightarrow S	AC	ZE-NA277-2	\bullet	\bullet	ZV-NA277-2	\bullet	\bullet	ZV2-NA277-2	\bullet	\bullet
	sealed roller arm lever	DC	XE-NA277-2			--			XV2-NA277-2		

Note: 1. The diagonal side mounting model feature improved sealing property, improved mounting strength through use of M5 screws, increased stability in seating with large mounting width ($31 \times 75 \mathrm{~mm}$) and permit coupling of a number of Switch units.
2. Ask your OMRON representative for information on models with ground terminals.

Specifications

Approved Standards

Agency	Standard	File No.
UL	UL508	E76675
CSA	CSA C22.2 No.14	LR45746
CCC (CQC)	GB/T14048.5	Contact your OMRON representative for details.

Note: 1. Models XE, XV, and XV2 are not approved by UL, CSA, and CCC.
2. Ask your OMRON representative for information on approved models.

Ratings

Model	Rated voltage	Non-inductive load (A)				Inductive load (A)				
		Resistive load		Lamp load		Inductive load		Motor load		
		NC	NO	NC	NO	NC	NO	NC	NO	
$\begin{aligned} & \text { ZE- } \square \\ & \text { ZV- }-\square \\ & \text { ZV2- } \end{aligned}$	125 VAC	15		3	1.5			5	2.5	
	250 VAC	$\begin{aligned} & 15 \\ & 10 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.75 \end{aligned}$	15				
	480 VAC						1.5	0.75		
	125 VDC	$\begin{aligned} & 0.5 \\ & 0.25 \end{aligned}$			$\begin{aligned} & 1 \\ & 0.5 \\ & 0.25 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.03 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.03 \end{aligned}$	
	250 VDC									
	8 VDC	10		3	1.5	10	10	5	2.5	
XE- \square	14 VDC	10		3	1.5	10	10	5	2.5	
XV- \square	30 VDC	10		3	1.5	10	10	5	2.5	
XV2-■	125 VDC	10		$\begin{aligned} & 3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 2 \end{aligned}$	61.5	2	2.51.5	
	250 VDC									

Inrush current	NC	30 A max.
	NO	15 A max.

Note: 1. The above figures are for standard currents
2. Inductive loads have a power factor of 0.4 min . (AC) and a time constant of 7 ms max. (DC).
3. Lamp load has an inrush current of 10 times the steadystate current.
4. Motor load has an inrush current of 6 times the steady-state current.

Approved Standard Ratings

UL/CSA

Model	Rated voltage	Current	Horsepower
ZE	125 VAC	15 A	$1 / 8 \mathrm{HP}$
	250 VAC	15 A	$1 / 4 \mathrm{HP}$
	480 VAC	15 A	--
	125 VDC	0.5 A	

CCC (GB/T14048.5)

Applicable category and ratings
AC-12 $10 \mathrm{~A} / 250$ VAC

Characteristics

Degree of protection		IP65*1
Durability* 2	Mechanical	$Z \square: 10,000,000$ operations min. X \square : 1,000,000 operations min.
	Electrical	Z $\square: 500,000$ operations min., for 15 A, 250 VAC resistive load $X \square: 100,000$ operations min., for 10 A, 125 VDC resistive load
Operating speed		Plunger type: $0.01 \mathrm{~mm} / \mathrm{s}$ to $0.5 \mathrm{~m} / \mathrm{s}$ Lever type: $0.02 \mathrm{~mm} / \mathrm{s}$ to $0.5 \mathrm{~m} / \mathrm{s}$
Operating frequency	Mechanical	120 operations/min
	Electrical	20 operations/min
Rated frequency		$50 / 60 \mathrm{~Hz}$
Insulation resistance		$100 \mathrm{M} \Omega$ min. (at 500 VDC)
Contact resistance		$15 \mathrm{~m} \Omega$ max. (initial value)
Terminal temperature rise		$50^{\circ} \mathrm{C}$ max.
Dielectric strength	Between terminals of the same polarity	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min
	Between currentcarrying metal part and ground	$Z \square: 2,000$ VAC, $50 / 60 \mathrm{~Hz}$ for 1 min $X \square: 1,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min
	Between each terminal and non-current-carrying metal part	Z $\square:$: 2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min $X \square: 1,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min
Vibration resistance	Malfunction	10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude*3
Shock resistance *3	Destruction	1,000m/s ${ }^{2}$ max.
	Malfunction	$\begin{aligned} & 100 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max} .{ }^{*} 4 \\ & 50 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max} .{ }^{*} 5 \end{aligned}$
Ambient operating temperature		$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ (with no icing)
Ambient operating humidity		General-purpose type: 35% to 85% RH Sealed type: 35% to 95% RH
Weight		Approx. 260 to 280 g

Note: The above figures are initial values.
*1. IP65 for $\square-\mathrm{N}$ models and IP60 for \square-Q models.
*2. The values are calculated at an operating temperature of $+5^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$, and an operating humidity of 40% to 70% RH. Contact your OMRON sales
representative for more detailed information on other operating environments.
*3. At the operation limit positions.
*4. Only for plunger, sealed plunger, roller arm lever, and sealed roller arm lever.
*5. Only for crossroller plunger, sealed crossroller plunger, roller plunger, and sealed roller plunger.

Engineering Data

Electrical Durability

ZE $(\cos \phi=1)$

ZE $(\cos \phi=0.4)$

[^0]: * Consult with your OMRON representative concerning availability, pricing, and delivery of conduit sizes and ground terminal specifications other than those on standard

