Solid-State Relays and Contactors

contents

Introduction 8/2
Solid-state switching devices
General data 8/3
Solid-state switching devices for resistive loads
Solid-state relays
3RF21 solid-state relays, single-phase, 22.5 mm 8/8
3RF20 solid-state relays, single-phase, 45 mm 8/9
3RF22 solid-state relays, three-phase, 45 mm 8/10
Solid-state contactors
General data 8/11
3RF23 solid-state contactors, single-phase 8/12
3RF24 solid-state contactors, 3-phase 8/14
Solid-state switching devices for switching motors
Solid-state contactors
General data 8/15
3RF34 solid-state contactors, 3-phase 8/16
3RF34 solid-state reversing contactors, 3-phase 8/17
3RF29 Function modules
$\begin{array}{ll}\text { Assignment of modules } & 8 / 18\end{array}$
Converters 8/23
Load monitoring 8/24
Heating current monitoring 8/25
Power controllers 8/26
Power control regulators 8/27
Technical data
Solid-state relays
3RF21 solid-state relays, single-phase, 22.5 mm 8/29
3RF20 solid-state relays, single-phase, 45 mm 8/32
3RF22 solid-state relays, three-phase, 45 mm 8/34
Solid-state contactors
3RF23 solid-state contactors, single-phase 8/36
3RF24 solid-state contactors, three-phase 8/39
3RF34 solid-state contactors, three-phase 8/41
3RF29 Function modules
Converters, load monitors, power controller, heating current monitors 8/46
Power control regulators 8/48
Thermal data 8/48
Dimensions 8/62
Wiring diagrams 8/71

Overview

Nomenclature Guide

3RF2	0	20	-	1	A	A	0	2
SIRIUS SC	Type	Rating		Terminal Type	Switching	Control Phases	Coil Type	Power Voltage
	$\begin{aligned} & 0=45 \mathrm{~mm} \text { Relay } \\ & 1=22.5 \mathrm{~mm} \text { Relay } \\ & 2=3 \text {-phase } 45 \mathrm{~mm} \text { Relay } \\ & 3=\text { Contactor } \\ & 4=3 \text {-phase Contactor } \\ & 9=\text { Function Module } \end{aligned}$			$\begin{aligned} & 1=\text { Screw } \\ & 2=\text { Spring } \\ & 3=\text { Ring Tounge } \end{aligned}$	$\begin{aligned} & \text { A }=\text { Zero Point } \\ & \text { B }=\text { Instantaneous } \\ & C=\text { Low Noise } \\ & D=\text { Short Circuit } \end{aligned}$	$\begin{aligned} & A=1 \text {-phase } \\ & B=2 \text {-phase } \\ & C=3 \text {-phase } \end{aligned}$	$\begin{aligned} & 0=24 \mathrm{VDC} \\ & 2=110-230 \text { VAC } \\ & 4=4-30 \text { VDC } \\ & 5=230 \text { VAC } \end{aligned}$	$\begin{aligned} & 2=24-230 \mathrm{VAC} \\ & 4=230-460 \mathrm{VAC} \\ & 5=48-600 \mathrm{VAC} \\ & 6=400-600 \mathrm{VAC} \end{aligned}$

Note: This is only a guide to decode the model number. All possible combinations of these are not produced. Character of " 3 " in position four indicates Sirius Innovations

Overview

SIRIUS 3RF2 solid-state switching devices

Solid-state switching devices for resistive loads

- Solid-state relays
- Solid-state contactors
- Function modules

Solid-state switching devices for switching motors

- Solid-state contactors
- Solid state reversing contactors

The most reliable solution for any application

Compared to electro mechanical contactors, our SIRIUS 3RF2 solid-state switching devices stand out due to their considerably longer service life. Thanks to the high product quality, their switching is extremely precise, reliable and, above all, insusceptible to faults. With its variable connection methods and a wide spread of control voltages, the SIRIUS 3RF2 family is universally applicable. Depending on the individual requirements of the application, our modular switchgear can also be quite easily expanded by the addition of standardized function modules.

Semiconductor relays

SIRIUS SC semiconductor relays are suitable for surface mounting on existing cooling surfaces. Installation is quick and easy, involving just two screws. Depending on the nature of the heat sink, the capacity reaches up to 88 A on resistive loads. The 3RF21 semiconductor relays can be expanded with various function modules to adapt them to individual applications.

The semiconductor relays are available in 2 different widths:

- 3RF21 semiconductor relay with a width of 22.5 mm
- 3RF20 and 3RF22 semiconductor relay with a width of 45 mm

Both variants are only available in the "zero-point switching" version. This standard version is ideally suited for operation with resistive loads.

Selecting semiconductor relays

When selecting semiconductor relays, in addition to information about the power system, the load and the ambient conditions it is also necessary to know details of the planned design. The semiconductor relays can only conform to their specific technical specifications if they are mounted with appropriate care on an adequately dimensioned heat sink. The following procedure is recommended:

- Determine the rated current of the load and the mains voltage
- Select the relay design and choose a semiconductor relay with higher rated current than the load requires
- Determine the thermal resistance of the proposed heat sink
- Check the correct relay size with the aid of the diagram

Solid-state contactors for switching motors

The solid-state contactors for switching motors are intended for frequently switching on and off three-phase current operating mechanisms up to 5 HP and reversing up to 3 HP . The

3RF24

3RF34 (Motor)

3RF29
devices are constructed with complete insulation and can be mounted directly to 3RV2 MSPs and SIRIUS overload relays, resulting in a very simple integration into motor feeders.

These three-phase solid-state contactors are equipped with a two-phase control which is particularly suitable for typical motor current circuits without connecting to the neutral conductor.

Important features:

- Insulated enclosure with integrated heat sink
- Degree of protection IP20
- Integrated mounting foot to snap on a standard mounting rail or for assembly onto a support plate
- Variety of connection methods
- Plug-in control connection
- Display via LEDs

Selecting solid-state contactors

The solid-state contactors are selected on the basis of details of the network, the load and the ambient conditions. As the solid-state contactors are already equipped with an optimally matched heat sink, the selection process is considerably simpler than that for solid-state relays.
The following procedure is recommended:

- Determine the rated current of the load and the mains voltage
- Select a solid-state contactor with the same or higher rated current than the load
- Testing the maximum permissible switching frequency based on the characteristic curves. To do this, the starting current, the starting time and the motor load in the operating phase must be known.
- If the permissible switching frequency is below the desired frequency, it is possible to achieve an increase by overdimensioning the motor.

Benefits

- Devices with integrated heat sink, "ready to use"
- Compact and space-saving design
- Reversing contactors with integrated interlocking

Application

Standards and approvals

- IEC 60947-4-3
- UL 508, CSA for North America ${ }^{1)}$
- CE marking for Europe
- C-Tick approval for Australia
${ }^{1)}$ Please note: For reversing motor applications use overvoltage protection device Type 3TX7462-3L; max. cut-off-voltage 6000 V ; min. energy handling capability 100 J

General data

Type	Solid-state relays			Solid-state contactors		Function modules					
	1-phase		3-phase	1-phase	3-phase	Converter			Heating	Power	
	22.5 mm	45 mm	45 mm				Basic	Extended	current monitoring	controllers	regulators
Usage											
Simple use of existing solid-state relays	\square	\checkmark	\square	\square	\square	--	--	--	--	--	--
Complete device "Ready to use"	\square	\square	\square	\checkmark	\checkmark	--	--	--	--	--	--
Space-saving	\checkmark	--	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	--	--	--	--
Can be extended with modular function modules	\checkmark	--	\checkmark	\checkmark	\checkmark	--	--	--	--	--	--
Frequent switching and monitoring of loads and solid-state relays/solid-state contactors	--	--	--	--	--	--	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Monitoring of up to 6 partial loads	--	--	--	--	--	--	\checkmark	--	\checkmark	\checkmark	--
Monitoring of more than 6 partial loads	--	--	--	--	--	--	--	\checkmark	--	--	--
Control of the heating power through an analog input	--	--	--	--	--	\checkmark	--	--	--	\checkmark	\checkmark
Power control	--	--	--	--	--	--	--	-- -	--	--	\checkmark
Startup											
Easy setting of setpoints with "Teach" button	--	--	--	--	--	--	\checkmark	\checkmark	--	\checkmark	\checkmark
"Remote Teach" input for setting setpoints	--	--	--	--	--	--	--	--	\checkmark	--	--
Mounting											
Mounting onto mounting rails or mounting plates	--	--	--	\checkmark	\checkmark	--	--	--	--	--	--
Can be snapped directly onto a solid-state relay or contactor	--	--	--	--	--	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
For use with "Coolplate" heat sink	\checkmark	\checkmark	\checkmark	--	--	--	--	-- -	--	--	--
Cable routing											
Connection of load circuit as for controls	\checkmark	--	\checkmark	\checkmark	\checkmark	--	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Connection of load circuit from	--	\checkmark	--	--	--	--	--	--	--	--	--

\checkmark Function is available

- Function is possible

Note: Permissible for use at altitudes of more than 2500 m above sea level with the following derating for 3RF2 Devices:
Site altitude 2500 m above sea level:
-Reduction of rated insulation voltage to $0,93 \times \mathrm{U}_{\mathrm{i}}$
-Reduction of load current to $0,93 \times \mathrm{I}_{\mathrm{e}}$
Site altitude 3000 m above sea level:
-Reduction of rated insulation voltage to $0,88 \times U_{i}$
-Reduction of load current to $0,9 \times I_{e}$
Site altitude 4000 m above sea level:

- Reduction of rated insulation voltage to $0,79 \times \mathrm{U}_{\mathrm{i}}$
-Reduction of load current to $0,8 \times \mathrm{I}_{\mathrm{e}}$
Site altitude 5000 m above sea level:
-Reduction of rated insulation voltage to $0,75 \times U_{i}$
-Reduction of load current to $0,7 \times \mathrm{I}_{\mathrm{e}}$
These ratings apply to a maximum ambient temperature of $40^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.

Benefits

- Considerable space savings thanks to a width of only 22.5 mm
- Variety of connection techniques: screw connection, springtype connection or ring terminal end, makes for easy terminations
- Flexible for a wide range of applications with function modules for retrofitting
- Possibility of fuseless short-circuit resistant design

Advantages:

- Saves time and costs with easy wiring, simple installation and fast commissioning
- Extremely long life, low maintenance, rugged and reliable
- Space-saving and safe thanks to side-by-side mounting up to an ambient temperature of $+60^{\circ} \mathrm{C}$
- Modular design: standardized function modules and heat sinks can be used in conjunction with 22.5 mm style semiconductor relays to satisfy unique application requirements
- Vibration-resistant and shock-resistant spring-loaded terminal connection system provides a superior connection even under tough conditions

Area of application

Applications

Solid-state relays

SIRIUS solid-state relays are suitable for surface mounting on existing cooling surfaces. Installation is quick and easy, involving just two screws. The special technology of the power semiconductor ensures there is excellent thermal contact with the heat sink. Depending on the nature of the heat sink, the capacity reaches up to 88 A on resistive loads.
The solid-state relays are available in three different versions:

- 3RF21 single-phase solid-state relay with a width of 22.5 mm
- 3RF20 single-phase solid-state relay with a width of 45 mm
- 3RF22 three-phase solid-state relay with a width of 45 mm

The 3RF21 and 3RF22 solid-state relays can be expanded with various function modules to adapt them to individual applications.

Solid-state contactors

The complete units consist of a solid-state relay plus optimized heat sink, and are therefore ready to use. They offer defined rated currents to make selection as easy as possible. Depending on the version, current intensities of up to 88 A are achieved. Like all of our solid-state switching devices, one of their particular advantages is their compact and space-saving design.

With their insulated mounting foot they can easily be snapped onto a standard mounting rail, or they can be mounted on carrier plates with fixing screws. This insulation enables them to be used in circuits with protective extra-low voltage (PELV) or safety extra-low voltage (SELV) in building engineering. For other applications, such as for extended personal safety, the heat sink can be grounded through a screw terminal.
The solid-state contactors are available in two different versions:

- 3RF23 single-phase solid-state contactors
- 3RF24 three-phase solid-state contactors

3RF22 three-phase solid-state relay with a width of 45 mm

With its compact design, which stays the same even at currents of up to 55 A, the 3RF22 solid-state relay is the ultimate in spacesaving construction, at a width of 45 mm . Installation on cooling surfaces is quick and easy, involving just two screws. The logical connection arrangement, with the power infeed from above and connection of the load from below, ensures tidy installation in the control cabinet.

3RF24 three-phase solid-state contactors

The compact design enables small compact units with currents up to 50 A . All special features of the solid-state relays for saving time and space are effective here too.

Example plastic machine industry:

Thanks to their high switching endurance, SIRIUS SC semiconductor switching devices are ideally suited for use in the control of electroheat. This is because the more precise the temperature regulation process has to be, the higher the switching frequency needs to be. The accurate regulation of electroheat is used for example in many processes in the plastic machine industry:

- Band heaters heat the extrudate to the correct temperature in plastic extruders
- Heat emitters heat plastic blanks to the correct temperature
- Heat drums dry plastic granules
- Heating channels keep molds at the correct temperature in order to manufacture different plastic parts without defects.
The powerful SIRIUS SC semiconductor relays and contactors can be used to control several heating loads at the same time. By using a load monitoring module the individual partial loads can easily be monitored, and in the event of a failure a signal is generated which can be sent to the controller.
Protecting the semiconductor relays and semiconductor contactors with 5 SY supplemental protectors.
Short-circuit protection and line protection with 5 SY supplemental protectors is easy to achieve with SIRIUS SC semiconductor relays and semiconductor contactors in comparison with designing load feeders with fuses. A special version of the semiconductor contactors can be protected against damage in the case of a short-circuit with 5 SY supplementary protector with type B tripping characteristic. This allows the low-cost and simple design of fuseless load feeders with full protection of the switching device.

Design

There is no typical design of a load feeder with semiconductor relays or semiconductor contactors; instead, the great variety of connection systems and control voltages offers universal application opportunities. SIRIUS SC semiconductor relays and semiconductor contactors can be installed in fuseless or fused feeders, as required.

There are special versions with which it is even possible to achieve short-circuit strength in a fuseless design.

Mounting regulations

Functions

Connection

All SIRIUS SC semiconductor switching devices are characterized by the great variety of connection methods. You can choose between the following connection techniques:

SIGUT connection system (screw)

The SIGUT connection system is the standard among industrial switching devices. Open terminals and a plus-minus screw are just two features of this technology. Two conductors of up to $6 \mathrm{~mm}^{21)}$ can be connected in just one terminal. As a result, loads of up to 50 A can be connected.
Spring-loaded connection system
This innovative technology holds the conductor without screw connection. This means that very high vibration resistance is achieved. Two conductors of up to $2.5 \mathrm{~mm}^{21}$) can be connected to each terminal. As a result, loads of up to 20 A can be dealt with.
Ring terminal end connection
The ring terminal end connection is equipped with an M5 screw. Ring terminal ends of up to $25 \mathrm{~mm}^{2}$ can be connected. In this way it is possible to connect conductors with up to 88 A safely. Additional finger safety can be provided with a special cover.

Switching types

In order to guarantee an optimized control method for different loads, the functionality of our semiconductor switching devices can be adapted accordingly.
The "zero-point switching" method is ideal for resistive loads, i.e. where the power semiconductor is activated at zero voltage.

For inductive loads, on the other hand, for example in the case of valves, it is better to go with "instantaneous switching". By distributing the ON point over the entire sine curve of the mains voltage, disturbances are reduced to a minimum.
A special "low noise" version is available due to a special control, this special version can be used in public networks up to 16A without any additional measures such as interference suppressor filters. As a result, it conforms to limit value curve class B according to EN 60947-4-3 in terms of emitted interference.

Function

Two-phase controlled version

In many three-phase applications there is no need of a threephase controller. Loads in a delta circuit or wye circuit, which have no connection to the neutral conductor, can be safely switched on and off using only two phases.

Nevertheless, the 3RF22 and 3RF24 three-phase solid-state switching devices provide the possibility of connecting all three phases to the switching device, with the middle phase looped directly through the device. Thanks to the lower power loss compared to a three-phase controlled device it is possible for the mounted accessories to be more compact.

Three-phase controlled version

This version is used in three-phase applications which have to switch all phases on and off for system reasons or in the case of loads in a wye circuit with connection to the neutral conductor.

Performance characteristics

The performance of the semiconductor switching devices are substantially determined by the type of power semiconductors used and the internal design. In the case of the SIRIUS SC semiconductor contactors and semiconductor relays, only thyristors are used instead of less powerful Triacs.
Two of the most important features of thyristors are the blocking voltage and the maximum load integral:

Blocking voltage

Thyristors with a high blocking voltage can also be operated without difficulty in power systems with high interference voltages. Separate protective measures, such as a protective circuit with a varistor, are not necessary in most cases.

With SIRIUS SC, for example, thyristors with 800 V blocking voltage are fitted for operation in power systems up to 230 V . Thyristors with up to 1600 V are used for power systems with higher voltages.

Maximum load integral

One of the purposes of specifying the maximum load integral $(R t)$ is to determine the rating of the short-circuit protection. Only a large power semiconductor with a correspondingly high Rt value can be given appropriate protection against destruction from a short-circuit by means of a protective device matched to the application. However, SIRIUS SC is also characterized by the optimum matching of the thyristors ($R t$ value) with the rated currents. The rated currents specified on the devices in conformance with EN 60947-4-3 were confirmed by extensive testing.

1) For mm^{2} to AWG conversion see page $19 / 21$ of Industrial Controls catalog.

Selection and ordering data

Inscription labels for 3RF2 series

(tame $=20$ units

1) PC labeling systems for individual inscription of unit labeling plates are available from: murrplastik Systemtechnik GmbH

Integration

Notes on integration in the load feeders

The SIRIUS solid-state switching devices are very easy to integrate into the load feeders thanks to their industrial connection method and design.

Particular attention must however be paid to the circumstances of the installation and ambient conditions, as the performance of the solid-state switching devices is largely dependent on these. Depending on the version, certain restrictions must be observed. Detailed information, for example in relation to solidstate contactors about the minimum spacing and to solid-state relays about the choice of heat sink, is given in the technical specifications (see Technical Information LV 1 T or our Mall) and the product data sheets.
Despite the rugged power semiconductors that are used, solidstate switching devices respond more sensitively to shortcircuits in the load feeder. Consequently, special precautions have to be taken against destruction, depending on the type of design.
Siemens generally recommends using SITOR semiconductor protection fuses. These fuses also provide protection against destruction in the event of a short-circuit even when the solidstate contactors and solid-state relays are fully utilized.

Alternatively, if there is lower loading, protection can also be provided by standard fuses or miniature circuit breakers. This protection is achieved by overdimensioning the solid-state switching devices accordingly. The technical specifications and the product data sheets contain details both about the solid-state fuse protection itself and about use of the devices with conventional protection equipment.
Semiconductor motor and reversing contactors can be easily combined with the 3RV motor starter protectors and 3RB2 overload relay from the SIRIUS modular system. Thus, fuseless and fuse motor feeders can be designed easily and in a spacesaving manner.
The solid-state switching devices for resistive loads are suitable for interference-free operation in industrial networks without further measures. If they are used in public networks, it may be necessary for conducted interference to be reduced by means of filters. This does not include the special solid-state contactors of type 3RF23..-.CA.. "Low Noise". These comply with the class B limit values up to a rated current of 16 A . If other versions are used, and at currents of over 16 A, standard filters can be used in order to comply with the limit values. The decisive factors when it comes to selecting the filters are essentially the current loading and the other parameters (operational voltage, design type, etc.) in the load feeder.
Suitable filters can be ordered from EPCOS AG.
You can find more information on the Internet at:
http://www.epcos.com

Selection and ordering data

Other rated control supply voltages on request.

1) The type current provides information about the performance of the semiconductor relay. The actual permitted operational current I_{e} can be smaller depending on the connection method and cooling conditions.
2) Please note that this version can only be used for a rated current of up to 50 A and a conductor cross section of $10 \mathrm{~mm}^{2}$.
3) Please note that this version can only be used for a rated current of up to 20 A and a conductor cross section of $2.5 \mathrm{~mm}^{2}$. See page 19/21 of Industrial controls catalog for mm^{2} to AWG conversion chart.
4) 50 A version with 24 AC/DC control - 3RF21 50-2AA14.

Note: See page 19/21 of Industrial Controls catalog for mm^{2} to AWG conversion chart.

Solid-State Relays

45 mm semiconductor relays

Fused design with semiconductor protection

 (similar to type of coordination " 2 ") ${ }^{1)}$The semiconductor protection for the SIRIUS SC control gear can be used with different protective devices. This allows protection by means of LV HRC fuses of operational class gL/gG or supplementary protectors. The table on page 7/21 lists the maximum permissible fuses for each SIRIUS SC controlgear.

If a fuse is used with a higher rated current than specified, semiconductor protection is no longer guaranteed. However, smaller fuses with a lower rated current for the load can be used without problems.
For protective devices with operational class gL/gG and for SITOR full range fuses 3NE1, the minimum cross-sections for the conductor to be connected must be taken into account.

Selection and ordering data

3RF20 20-1AA02

Type current 1)	Maxi able curre 115	um a power nt and 230	iev- r type e $=$ 400 V	Screw connection ${ }^{2)}$	Spring-loaded connection ${ }^{3)}$	Ring cable connection	Std. Pack Qty	Weight per pack approx.
A	kW	kW	kW	Order No.	Order No.	Order No.		kg
Zero-point switching, rated operational voltage $U_{e}=24 \mathrm{~V}$ to 230 V								
20	2.3	4.6	-	3RF20 20-1AA $\square 2$	-	-	1 unit	0.085
30	3.5	6.9	-	3RF20 30-1AA $\square 2$	-	-	1 unit	0.085
50	5.8	11.5	-	3RF20 50-1AA $\square 2$	-	-	1 unit	0.085
70	8.1	16.1	-	3RF20 70-1AA $\square 2$	-	-	1 unit	0.085
88	10.4	20.7	-	3RF20 90-1AA $\square 2$	-	-	1 unit	0.085
Zero-point switching, rated operational voltage $U_{e}=48 \mathrm{~V}$ to 460 V								
20	-	4.6	8	3RF20 20-1AA $\square 4$	-	-	1 unit	0.085
30	$-$	6.9	12	3RF20 30-1AAD4	-	-	1 unit	0.085
50	-	11.5	20	3RF20 50-1AA 4	-	-	1 unit	0.085
70	-	16.1	28	3RF20 70-1AA $\square 4$	-	-	1 unit	0.085
88	-	20.7	36	3RF20 90-1AA $\square 4$	-	-	1 unit	0.085
Zero-point switching, rated operational voltage $U_{e}=24 \mathrm{~V}$ to 230 V , control DC 4 ... 30 V								
20	-	-	-	3RF20 20-1AA42	-	-	1 unit	0.085
30	-	-	-	3RF20 30-1 AA42	-	-	1 unit	0.085
Zero-point switching, rated operational voltage $U_{e}=48 \mathrm{~V}$ to 600 V , control DC $4 \ldots 30 \mathrm{~V}$								
20	-	4.6	8	3RF20 20-1AA45	-	-	1 unit	0.085
50	-	11.5	20	3RF20 50-1AA45	-	-	1 unit	0.085
70	-	16.1	28	3RF20 70-1AA45	-	-	1 unit	0.085
90	-	20.7	36	3RF20 90-1AA45	-	-	1 unit	0.085
Zero-point switching, rated operational voltage $U_{e}=48 \mathrm{~V}$ to 600 V , blocking voltage 1600 V								
30	-	-	12	3RF20 30-1AA $\square 6$	-	-	1 unit	0.085
50	-	-	20	3RF20 50-1AA $\square 6$	-	-	1 unit	0.085
70	-	-	28	3RF20 70-1AA $\square 6$	-	-	1 unit	0.085
88	-	-	36	3RF20 90-1AA $\square 6$	-	-	1 unit	0.085
Zero-point switching, rated operational voltage $U_{e}=48 \mathrm{~V}$ to 460 V , control DC $4 \ldots 30 \mathrm{~V}$ switching								
50	-	-		3RF20 50-1AA44	-	-	1 unit	0.085
Instantaneous switching, rated operational voltage $U_{e}=48 \mathrm{~V}$ to 460 V , control 24 V DC acc. to EN 61131-2								
30	-	-	-	3RF20 30-1BA04	-	-	1 unit	0.085
Order No. extension for rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$								
DC 24 V acc. to EN 61131-2 AC 110 V... 230 V				$\begin{aligned} & 0 \\ & 2 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 2 \end{aligned}$		

Other rated control supply voltages on request.

1) The type current provides information about the performance of the semiconductor relay. The actual permitted operational current I_{e} can be smaller depending on the connection method and cooling conditions.
2) Please note that this version can only be used for a rated current of up to 50 A and a conductor cross section of $10 \mathrm{~mm}^{2}$.
3) Screw terminals and spring terminals (control current side).

Note: For mm^{2} to AWG conversion chart see Industrial Controls catalog page 15/9.

Solid-State Relays

3RF22 solid-state relays, 3 -phase, 45 mm

Selection and ordering data

Selecting solid-state relays

When selecting solid-state relays, in addition to information about the power system, the load and the ambient conditions it is also necessary to know details of the planned design. The solid-state relays can only conform to their specific technical specifications if they are mounted with appropriate care on an adequately dimensioned heat sink. The following procedure is recommended:

- Determine the rated current of the load and the mains voltage
- Select the relay design and choose a solid-state relay with higher rated current than the load
- Determine the thermal resistance of the proposed heat sink
- Check the correct relay size with the aid of the diagrams.

	Type current ${ }^{1}$)	Rated control supply voltage	Screw terminal ${ }^{\text {2) }}$	Weight per pack approx.
	A	V	Order No.	kg
Zero-point switching Rated operational voltage $U_{e} 48 \mathrm{~V} \ldots 600 \mathrm{~V}$				
	Two-phase 30 55	4 ... 30 V DC	3RF22 30-1AB $\square 5$ 3RF22 55-1ABロ5	$\begin{aligned} & 0.150 \\ & 0.150 \end{aligned}$
	Three-phase 30 55	$4 \ldots 30 \vee D C$	3RF22 30-1AC $\square 5$ 3RF22 55-1AC口5	$\begin{aligned} & 0.150 \\ & 0.150 \end{aligned}$
3RF22 30-1AB45		$\begin{aligned} & 110 \mathrm{~V} \text { AC } \\ & 4 \ldots 30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	
	Type current ${ }^{1)}$	Rated control supply voltage	Spring-loaded terminals ${ }^{3}$	Weight per pack approx.
	A	V	Order No.	kg
Zero-point switching Rated operational voltage $\boldsymbol{U}_{\mathrm{e}} 48 \mathrm{~V} \ldots 600 \mathrm{~V}$				
	Two-phase 30 55	$4 \ldots 30 \mathrm{~V}$ DC	3RF22 30-2AB45 3RF22 55-2AB45	$\begin{aligned} & 0.150 \\ & 0.150 \end{aligned}$
	Three-phase 30 55	4 ... 30 V DC	3RF22 30-2AC45 3RF22 55-2AC45	$\begin{aligned} & 0.150 \\ & 0.150 \end{aligned}$

	Type current ${ }^{1}$)	Rated control supply voltage	Ring terminal end connection	Weight per pack approx
	A	V	Order No.	kg
Zero-point Rated op	$\text { e } U_{e} 48 \mathrm{~V} . . .6$			
	Two-phase 30 55	$4 \ldots 30 \mathrm{~V}$ DC	3RF22 30-3AB45 3RF22 55-3AB45	$\begin{aligned} & 0.150 \\ & 0.150 \end{aligned}$
	Three-phase			
	30	$4 \ldots 30 \mathrm{VDC}$	3RF22 30-3AC45	0.150
	55		3RF22 55-3AC45	0.150

1) The type current provides information about the performance of the solid-state relay.
The actual permitted rated operational current I_{e} can be smaller depending on the connection method and cooling conditions.
2) Please note that the version with an M4 screw terminal can only be used for a rated current of up to approx. 50 A and a conductor cross-section of $10 \mathrm{~mm}^{2}$.
3) Please note that this version can only be used for a rated current of up to approx. 20 A and a conductor cross-section of $2.5 \mathrm{~mm}^{2}$.

Overview

Solid-state contactors

The complete units consist of a solid-state relay plus optimized heat sink, and are therefore ready to use. They offer defined rated currents to make selection as easy as possible. Depending on the version, current strengths of up to 88 A are achieved. Like all of our solid-state switching devices, one of their particular advantages is their compact and space-saving design.
With their insulated mounting foot they can easily be snapped onto a standard mounting rail, or they can be mounted on support plates with fixing screws. This insulation enables them to be used in circuits with protective extra-low voltage (PELV) or safety extra-low voltage (SELV) in building management systems. For other applications, such as for extended personal safety, the heat sink can be grounded through a screw terminal.
The solid-state contactors are available in 2 different versions:

- 3RF23 single-phase solid-state contactors,
- 3RF24 three -phase solid-state contactors

Single-phase versions

The 3RF23 solid-state contactors can be expanded with various function modules to adapt them to individual applications.

Version for resistive loads, "zero-point switching"

This standard version is often used for switching space heaters on and off.

Version for inductive loads, "instantaneous switching"

In this version the solid-state contactor is specifically matched to inductive loads. Whether it is a matter of frequent actuation of the valves in a filling plant or starting and stopping small operating mechanisms in packet distribution systems, operation is carried out safely and noiselessly.

Special "Low noise" version

Thanks to a special control circuit, this special version can be used in public networks up to 16 A without any additional measures such as interference suppressor filters. As a result it conforms to limit value curve class B according to EN 60947-4-3 in terms of emitted interference.

Special "Short-circuit-proof" version

Skillful matching of the power semiconductor with the performance capacity of the solid-state contactor means that "shortcircuit strength" can be achieved with a standard miniature circuit breaker. In combination with a B-type MCB or a conventional line protection fuse, the result is a short-circuit resistant feeder.
In order to achieve problem-free short-circuit protection by means of miniature circuit breakers, however, certain boundary conditions must be observed. As the magnitude and duration of the short-circuit current are determined not only by the short-circuit breaking response of the miniature circuit breaker but also the properties of the wiring system, such as the internal resistance of the input to the network and damping by controls and cables, particular attention must also be paid to these parameters. The necessary cable lengths are therefore shown for the main factor, the line resistance, in the table above right.
The following miniature circuit breakers with a type B tripping characteristic and 10 kA or 6 kA breaking capacity protect the 3RF23..-.DA.. solid-state contactors in the event of short-circuits on the load and the specified conductor cross-sections and lengths:

Rated current of the miniature circuit breaker	Example Type ${ }^{1)}$	Max. conductor cross-section	Minimum cable length from contactor to load
6 A	5SY4106-6	$1 \mathrm{~mm}^{2}$	5 m
10 A	5SY4110-6	$1.5 \mathrm{~mm}^{2}$	8 m
16 A	5SY4116-6	$1.5 \mathrm{~mm}^{2}$	12 m
		$2.5 \mathrm{~mm}^{2}$	20 m
20 A	5SY4120-6	$2.5 \mathrm{~mm}^{2}$	20 m
25 A	5SY4125-6	$2.5 \mathrm{~mm}^{2}$	26 m

1) The miniature circuit breakers can be used up to a maximum rated voltage of 480 V !

The setup and installation above can also be used for the solidstate relays with a $I^{2} t$ value of at least $6600 A^{2} \mathrm{~s}$.

Three-phase versions

The three-phase solid-state contactors for resistive loads up to 50 A are available with

- two-phase control (suitable in particular for circuits without connection to the neutral conductor) and
- three-phase control (suitable for star circuits with connection to the neutral conductor or for applications in which the system requires all phases to be switched).
The converter function module can be snapped onto both versions for the simple power control of AC loads by means of analog signals.
- Check the correct contactor size with the aid of the rated current diagram, taking account of the design conditions.

Solid-State Switching Devices

Solid-State Relays

SIRIUS SC semiconductor contactors - single phase selection

Selection and ordering data

Selecting solid-state contactors
The semiconductor contactors are selected on the basis of details of the power system, the load and the ambient conditions. As the semiconductor contactors are already equipped with an optimally matched heat sink, the selection process is considerably simpler than that for semiconductor relays.

The following procedure is recommended:

- Determine the rated current of the load and the mains voltage
- Select a semiconductor contactor with the same or higher rated current than the load
- Check the correct contactor size with the aid of the rated current diagram, taking account of the design conditions

Order No. extension for

rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$
DC 24 V acc. to EN 61131-2
0
2
Other rated control supply voltages on request.

1) The type current provides information about the performance of the semiconductor contactor. The actual permitted operational current I_{e} can be smaller depending on the connection method and start-up conditions. Derating acc. to curves from page $8 / 50,8 / 51,8 / 52$.
2) $110 \ldots 230 \mathrm{AC}$ control voltage .

Solid-State Contactors

SIRIUS SC semiconductor contactors - single phase selection

1) The type current provides information about the performance of the semiconductor contactor. The actual permitted operational current I_{e} can be smaller depending on the connection method and start-up conditions. Derating acc. to curves from page 8/50, 8/51, 8/52.

Other rated control supply voltages on request.
2) $4 \ldots 30 \mathrm{DC}$ control voltage

Accessories

Terminal cover for 3RF21 semiconductor relays and 3RF23 semiconductor contactors with ring terminal end (after simple adaptation, this terminal cover can also be used for

Order No.	Std. Pack Qty	Weight per pack approx.

kg

3RF29 00-3PA88 10 units 0.010

Solid-State Contactors

3RF24 solid-state contactors, 3-phase

Selection and ordering data

[^0]
Solid-State Contactors for Switching Motors

General data

Overview

Solid-state contactor for direct-on-line starting
The solid-state contactors for switching motors are intended for frequently switching on and off three-phase current operating mechanisms up to 7.5 kW and reversing up to 3.0 kW . The devices are constructed with complete insulation and can be mounted directly on SIRIUS motor starter protectors, overload relays and current monitoring relays, resulting in a very simple integration into motor feeders.
These three-phase solid-state contactors are equipped with a two-phase control which is particularly suitable for typical motor current circuits without connecting to the neutral conductor. Important features:

- Insulated enclosure with integrated heat sink
- Degree of protection IP20
- Integrated mounting foot to snap on a standard mounting rail or for assembly onto a support plate
- Variety of connection methods
- Plug-in control connection
- Display via LEDs
- Wide voltage range for AC control supply voltage

Switching functions

The solid-state contactors for switching motors are ""instantaneous switching" because this method is particularly suited for inductive loads. By distributing the ON point over the entire sine curve of the mains voltage, disturbances are reduced to a minimum

Selecting solid-state contactors

The solid-state contactors are selected on the basis of details of the network, the load and the ambient conditions.
The following procedure is recommended:

- Determine the rated current of the load and the mains voltage
- Select a solid-state contactor with the same or higher rated current than the load
- Testing the maximum permissible switching frequency based on the characteristic curves (see "Technical Information"). To do this, the starting current, the starting time and the motor loaded in the operating phase must be known.
- If the permissible switching frequency is under the desired frequency, it is possible to achieve an increase only by overdimensioning the motor and the solid-state contactor!

Benefits

- Units with integrated heat sink, "ready to use"
- Compact and space-saving design
- Reversing contactors with integrated interlocking

Application

Use in load feeders

There is no typical design of a load feeder with solid-state relays or solid-state contactors; instead, the great variety of connection methods and control voltages offers universal application opportunities. SIRIUS solid-state relays and solid-state contactors can be installed in fuseless or fused feeders, as required.

Standards and approvals

- IEC 60947-4-2
- UL 508, CSA for North America1)
- CE marking for Europe
- C-Tick approval for Australia
- CCC approval for China

[^1]
Solid-State Contactors for Switching Motors

3RF34 solid-state contactors, 3-phase

Selection and ordering data

Motor contactors • Instantaneous switching • Two-phase controlled

	Rated operational current I_{e} A	Rated HP at supply voltage							Rated control supply voltage U_{s}	DT	Spring-type terminals Configurator Order No.	$\begin{aligned} & 00 \\ & \square \\ & \square \\ & 0, \end{aligned}$	Std. Pack Qty
		Single Phase			Three Phase								
		115V	$\begin{aligned} & 200 / \\ & 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 230 / \\ & 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 / \\ & 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 230 / \\ & 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 460 / \\ & 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 575 / \\ & 600 \mathrm{~V} \end{aligned}$	V				
Rated operational voltage $U_{e}$$48 \text {... } 480 \text { V AC }$													
	$\begin{aligned} & 5.2 \\ & 9.2 \\ & 12.5 \\ & 16 \end{aligned}$	$1 / 10$ $1 / 4$ $1 / 3$ $1 / 3$	$\begin{aligned} & 1 / 4 \\ & 1 / 2 \\ & 1 / 2 \\ & 3 / 4 \end{aligned}$	$\begin{gathered} 1 / 4 \\ 3 / 4 \\ 3 / 4 \\ 1 \end{gathered}$	$\begin{array}{r} 1 / 2 \\ 11 / 2 \\ 2 \\ 2 \end{array}$	$\begin{array}{r}3 / 4 \\ 2 \\ 2 \\ 2 \\ \hline\end{array}$	2 3 3 5	2 5 5 7	$24 \text { DC acc. to }$ IEC 61131-2	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	3RF34 05-2BB04 3RF34 10-2BB04 3RF34 12-2BB04 3RF34 16-2BB04		1 unit 1 unit 1 unit 1 unit
	5.2	1/10	1/4	1/4	1/2	3/4	2	2	$110 \ldots 230 \mathrm{AC}$	B	3RF34 05-2BB24		1 unit
T.	9.2	1/4	1/2	3/4	11/2	2	3	5		B	3RF34 10-2BB24		1 unit
18	12.5	1/3	1/2	3/4	2	2	3	5		B	3RF34 12-2BB24		1 unit
	16	1/3	3/4	1	2	2	5	7		B	3RF34 16-2BB24		1 unit
3RF34 05-2BB													
Rated operational voltage U_{e} 48 ... 600 V AC, blocking voltage 1600 V													
4ng	5.2	1/10	1/4	1/4	1/2	3/4	2	2	24 DC acc. to	B	3RF34 05-2BB06		1 unit
	9.2	1/4	1/2	3/4	$11 / 2$	2	3	5	IEC 61131-2	B	3RF34 10-2BB06		1 unit
	12.5	1/3	1/2	3/4	2	2	3	5		B	3RF34 12-2BB06		1 unit
	16	1/3	3/4	1	2	2	5	7		B	3RF34 16-2BB06		1 unit
	5.2	1/10	1/4	1/4	1/2	3/4	2	2	110 ... 230 AC	B	3RF34 05-2BB26		1 unit
Q	9.2	1/4	1/2	3/4	$11 / 2$	2	3	5		B	3RF34 10-2BB26		1 unit
4	12.5	1/3	1/2	3/4	2	2	3	5		B	3RF34 12-2BB26		1 unit
	16	1/3	3/4	1	2	2	5	7		B	3RF34 16-2BB26		1 unit

Solid-State Contactors for Switching Motors

3RF34 solid-state - reversing contactors, 3-phase

Selection and ordering data

Reversing contactors • Instantaneous switching • Two-phase controlled

	Rated operational current I_{e}	Rated HP at supply voltage							Rated control supply voltage $U_{\text {s }}$	DT	Screw terminals Configurator		Std. Pack Qty
		Single Phase			Three Phase								
		115 V	$\begin{aligned} & 200 / \\ & 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 230 / \\ & 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 / \\ & 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 230 / \\ & 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 460 / \\ & 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 575 / \\ & 600 \mathrm{~V} \end{aligned}$	V		Order No.		
Rated operational voltage $U_{e} 48 \ldots 480 \mathrm{~V}$ AC													
	$\begin{aligned} & 3.8 \\ & 5.4 \\ & 7.4 \end{aligned}$	$\begin{array}{r} 1 / 10 \\ 1 / 6 \\ 1 / 4 \end{array}$	$\begin{aligned} & 1 / 4 \\ & 1 / 3 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 3 \\ & 3 / 4 \end{aligned}$	$\begin{array}{r} 1 / 2 \\ 1 \\ 11 / 2 \end{array}$	$\begin{array}{r} 3 / 4 \\ 1 \\ 2 \end{array}$	2 3 3	$\begin{aligned} & 2 \\ & 5 \\ & 5 \end{aligned}$	24 DC acc. to IEC 61131-2	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	3RF34 03-1BD04 3RF34 05-1BD04 3RF34 10-1BD04		1 unit 1 unit 1 unit
${ }^{-}$		1/10	1/4	1/4	1/2	3/4	2	2	110.. 230 AC			3RF34 03-1BD	
	5.4	1/6	1/3	1/3	1	1	3	5		B	3RF34 05-1BD24		1 unit
cotm	7.4	1/4	1/2	3/4	11/2	2	3	5		B	3RF34 10-1BD24		1 unit
3RF34 10-1BD													

$\}_{4}^{\xi_{3}^{3}}$ For online configurator see www.siemens.com/sirius/configurators.

Accessories

	Price per PU	Std Pack Qty

1) PC labeling system for individual inscription of unit labeling plates available from: murrplastik Systemtechnik GmbH

3RF29 Function Modules

Selection Tables

Overview

Function modules for SIRIUS 3RF2 solid-state switching devices

A great variety of applications demand an expanded range of functionality. With our function modules, these requirements can be met really easily. The modules are mounted simply by clicking them into place; straight away the necessary connections are made with the solid-state relay or contactor. The plug-in connection to control the solid-state switching devices can simply remain in use.

The following function modules are available:

- Converters
- Load monitoring
- Heating current monitoring
- Power controllers
- Power regulators

With the exception of the converter, the function modules can be used only with single-phase solid-state switching devices.

Recommended assignment of the function modules to the 3RF21 single-phase solid-state relays

Type	Accessories					
	Converters	Load monitoring Basic	Extended ${ }^{1}$	Heating current ${ }^{1)}$ monitoring	Power controllers ${ }^{1}{ }^{\text {1 }}$	Power regulators ${ }^{1)}$
Type current $=20 \mathrm{~A}$						
$\begin{aligned} & \text { 3RF21 20-1A. } 02 \\ & \text { 3RF21 20-1A. } 04 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-OEA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OFA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	3RF29 20-0GA13 3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-OKA13 3RF29 20-0KA16	3RF29 20-OHA13 3RF29 20-0HA16
$\begin{aligned} & \text { 3RF21 20-1A.22 } \\ & \text { 3RF21 20-1A. } 24 \end{aligned}$	$\begin{aligned} & -- \\ & \text {-- } \end{aligned}$	---	3RF29 20-0GA33 3RF29 20-0GA36	--	--	--
$\begin{aligned} & \hline \text { 3RF21 20-1A.42 } \\ & \text { 3RF21 20-1A. } 45 \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-OEA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OFA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA13 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$	3RF29 32-0JA16	3RF29 20-OKA13 3RF29 20-0KA16	3RF29 20-OHA13 3RF29 20-0HA16
3RF21 20-1B. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
$\begin{aligned} & \hline \text { 3RF21 20-2A. } 02 \\ & \text { 3RF21 20-2A. } 04 \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	--	--	--	--	--
$\begin{aligned} & \text { 3RF21 20-2A. } 22 \\ & \text { 3RF21 20-2A. } 24 \end{aligned}$	--	--	--	--	--	--
$\begin{aligned} & \hline \text { 3RF21 20-2A. } 42 \\ & \text { 3RF21 20-2A. } 45 \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	--	--	--	--	--
$\begin{aligned} & \hline \text { 3RF21 20-3A.02 } \\ & \text { 3RF21 20-3A.04 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-OEA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & -- \\ & \text {-- } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA13 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-OHA13 3RF29 20-0HA16
$\begin{aligned} & \hline \text { 3RF21 20-3A. } 22 \\ & \text { 3RF21 20-3A. } 24 \end{aligned}$	$\begin{aligned} & \text {-- } \\ & \text {-- } \end{aligned}$	$\begin{aligned} & -- \\ & \text {-- } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA33 } \\ & \text { 3RF29 20-0GA36 } \end{aligned}$	--	$\begin{aligned} & \text { 3RF29 20-0KA13 } \\ & \text { 3RF29 20-0KA16 } \end{aligned}$	3RF29 20-OHA13 3RF29 20-OHA16
Type current =30 A						
3RF21 30-1A. 02 3RF21 30-1 A. 04 3RF21 30-1A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-0KA13 3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-0HA13 3RF29 50-0HA16 3RF29 50-0HA16
$\begin{aligned} & \text { 3RF21 30-1A. } 22 \\ & \text { 3RF21 30-1A. } 24 \\ & \text { 3RF21 30-1A. } 26 \end{aligned}$	$\begin{aligned} & -- \\ & \text {-- } \end{aligned}$	$\begin{aligned} & -- \\ & \text {-- } \end{aligned}$	3RF29 50-0GA33 3RF29 50-0GA36 3RF29 50-0GA36	--	--	3RF29 50-0HA33 3RF29 50-0НA36 3RF29 50-0HA36
$\begin{aligned} & \hline \text { 3RF21 30-1A.42 } \\ & \text { 3RF21 30-1A.45 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0FA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 50-0GA13 } \\ & \text { 3RF29 50-0GA16 } \end{aligned}$	3RF29 32-0JA16	3RF29 50-0KA13 3RF29 50-0KA16	$\begin{aligned} & \text { 3RF29 50-OHA13 } \\ & \text { 3RF29 50-0HA16 } \end{aligned}$
3RF21 30-1B. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
Type current $=50 \mathrm{~A}$						
$\begin{aligned} & \text { 3RF21 50-1A. } 02 \\ & \text { 3RF21 50-1A.04 } \\ & \text { 3RF21 50-1A.06 } \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-0KA13 3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-OHA13 3RF29 50-OHA16 3RF29 50-0HA16
3RF21 50-1A. 22 3RF21 50-1A. 24 3RF21 50-1A. 26		$\begin{aligned} & -- \\ & \text {-- } \end{aligned}$	3RF29 50-0GA33 3RF29 50-0GA36 3RF29 50-0GA36	$\begin{gathered} -- \\ -- \\ \hline- \end{gathered}$		3RF29 50-OHA33 3RF29 50-0HA36 3RF29 50-0HA36
3RF21 50-1A.45	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
$\begin{aligned} & \text { 3RF21 50-1B.04 } \\ & \text { 3RF21 50-1B. } 06 \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18	$\begin{aligned} & \text { 3RF29 20-0FA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-OKA16 3RF29 50-0KA16	3RF29 50-OHA16 3RF29 50-0HA16
3RF21 50-1B.22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0HA33
3RF21 50-2A. 02 3RF21 50-2A. 04 3RF21 50-2A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	--	--	-- -- --	-- -- --	--
3RF21 50-2A. 14	3RF29 00-0EA18	--	--	--	--	--
3RF21 50-2A. 22	--	--	--	--	--	--
3RF21 50-2A. 24	--	--	--	--	--	--
3RF21 50-2A. 26	--	--	--	--	--	--
3RF21 50-3A. 02 3RF21 50-3A. 04 3RF21 50-3A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	--	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-0KA13 3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-OHA13 3RF29 50-OHA16 3RF29 50-0HA16
3RF21 50-3A. 22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0HA33
3RF21 50-3A. 24	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF21 50-3A. 26	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36

1) For line voltages in the range from 110 to 230 V , the versions of the 3RF29..-0.A13 function modules can also be combined with more voltage-resistant versions of the solid-state relays (3RF21..-....4, -... 5 or -....6).

3RF29 Function Modules

Selection Tables

Type	Accessories					
	Converters	Load monitoring Basic	Extended ${ }^{1}$)	Heating current ${ }^{1}$) monitoring	Power controllers ${ }^{1}$	Power regulators ${ }^{1)}$
Type current = 70 A						
3RF21 70-1A. 02 3RF21 70-1A. 04 3RF21 70-1A. 05 3RF21 70-1A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-OJA16 3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-0KA13 3RF29 50-0KA16 3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-0HA13 3RF29 50-0HA16 3RF29 50-0HA16 3RF29 50-OHA16
3RF21 70-1A. 22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0НA33
3RF21 70-1A. 24	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF21 70-1A. 26	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF21 70-1A.45	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF21 70-1B.04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF21 70-1C. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
Type current $=90 \mathrm{~A}$						
$\begin{aligned} & \text { 3RF21 90-1A. } 02 \\ & \text { 3RF21 90-1A.04 } \\ & \text { 3RF21 90-1A. } 06 \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	$\begin{aligned} & \text { 3RF29 50-0GA13 } \\ & \text { 3RF29 50-0GA16 } \\ & \text { 3RF29 50-0GA16 } \end{aligned}$	3RF29 32-0JA16 3RF29 32-0JA16	$\begin{aligned} & \text { 3RF29 50-OKA13 } \\ & \text { 3RF29 50-0KA16 } \\ & \text { 3RF29 50-OKA16 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 50-OHA13 } \\ & \text { 3RF29 50-0HA16 } \\ & \text { 3RF29 50-OHA16 } \end{aligned}$
3RF21 90-1A. 22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0HA33
3RF21 90-1A. 24	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF21 90-1A. 26	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF21 90-1A.45	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF21 90-1B.04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF21 90-2A. 02	3RF29 00-0EA18	--	--	--	--	--
3RF21 90-2A. 04	3RF29 00-0EA18	--	--	--	--	--
3RF21 90-2A. 06	3RF29 00-0EA18	--	--	--	--	--
3RF21 90-2A. 22	--	--	--	--	--	--
3RF21 90-2A. 24	--	--	--	--	--	--
3RF21 90-2A. 26	--	--	--	--	--	--
3RF21 90-3A. 02	3RF29 00-0EA18	--	3RF29 90-0GA13	--	3RF29 50-0KA13	3RF29 90-0HA13
3RF21 90-3A.04	3RF29 00-0EA18	--	3RF29 90-0GA16	3RF29 32-0JA16	3RF29 90-0KA16	3RF29 90-0HA16
3RF21 90-3A. 06	3RF29 00-0EA18	--	3RF29 90-0GA16	3RF29 32-0JA16	3RF29 90-0KA16	3RF29 90-0HA16
3RF21 90-3A. 22	--	--	3RF29 90-0GA33	--	--	3RF29 90-0HA33
3RF21 90-3A. 24	--	--	3RF29 90-0GA36	--	--	3RF29 90-0HA36
3RF21 90-3A. 26	--	--	3RF29 90-0GA36	--	--	3RF29 90-0HA36
3RF21 90-3A. 44	3RF29 00-0EA18	--	3RF29 90-0GA16	3RF29 32-0JA16	3RF29 90-0KA16	3RF29 90-0HA16

1) For line voltages in the range from 110 to 230 V , the versions of the 3RF29..-0.A13 function modules can also be combined with more voltage-resistant versions of the solid-state relays (3RF21..-....4, -... 5 or -....6).
Recommended assignment of the function modules to the 3RF22 three-phase solid-state relays

Type	Accessories					
	Converters	Load monitoring Basic	Extended	Heating current monitoring	Power controllers	Power regulators
Type current up to 55 A						
3RF22 ..-1A...	3RF29 00-0EA18	--	--	--	--	--
3RF22 ..-2A...	3RF29 00-0EA18	--	--	--	--	--
3RF22 ..-3A...	3RF29 00-0EA18	--	--	--	--	--

Recommended assignment of the function modules to the 3RF23 single-phase solid-state contactors

) For line voltages in the range from 110 to 230 V , the versions of the 3RF29..-0.A13 function modules can also be combined with more voltage-resistant versions of the solid-state contactors (3RF23..-....4, -.... 5 or -....6).

Type	Accessories					
	Converters	Load monitoring Basic	Extended ${ }^{1)}$	Heating current ${ }^{1)}$ monitoring	Power controllers ${ }^{1}$	Power regulators ${ }^{1)}$
Type current $I_{\text {e }}=10.5 \mathrm{~A}$						
3RF23 10-1B. 02 3RF23 10-1B. 04 3RF23 10-1B. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 20-0GA13 3RF29 20-0GA16 3RF29 20-0GA16	3RF29 16-OJA13 3RF29 32-0JA16 3RF29 32-0JA16	3RF29 20-OKA13 3RF29 20-0KA16 3RF29 20-0KA16	3RF29 20-OHA13 3RF29 20-0HA16 3RF29 20-0HA16
3RF23 10-1B. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 10-1B. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 10-1B. 26	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 10-2A. 02	3RF29 00-0EA18	--	--	--	--	--
3RF23 10-2A. 04	3RF29 00-0EA18	--	--	-	--	--
3RF23 10-2A. 06	3RF29 00-0EA18	--	--	-	--	--
3RF23 10-2A. 22	--	--	--	--	--	--
3RF23 10-2A. 24	--	--	--	--	--	--
3RF23 10-2A. 26	--	--	--	--	--	--
3RF23 10-3A. 02	3RF29 00-0EA18	--	3RF29 20-0GA13	3RF29 16-0JA13	3RF29 20-0KA13	3RF29 20-0HA13
3RF23 10-3A. 04	3RF29 00-0EA18	--	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 10-3A. 06	3RF29 00-0EA18	--	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 10-3A. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 10-3A. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 10-3A. 26	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
Type current $I_{\mathrm{e}}=20 \mathrm{~A}$						
3RF23 20-1A. 02	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA13	R	3RF29 20-0KA13	3RF29 20-0HA13
3RF23 20-1A. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-1A. 06	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-1A. 14	3RF29 00-0EA18	--	3RF29 20-0GA16	--	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-1A. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 20-1A. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-1A. 26	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
$\begin{aligned} & \text { 3RF23 20-1A. } 44 \\ & \text { 3RF23 20-1A.45 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-OEA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OFA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA16 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$	3RF29 32-0JA16 3RF29 32-0JA16	$\begin{aligned} & \text { 3RF29 20-OKA16 } \\ & \text { 3RF29 20-OKA16 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OHA16 } \\ & \text { 3RF29 20-OHA16 } \end{aligned}$
3RF23 20-1B. 02	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA13	--	3RF29 20-0KA13	3RF29 20-0HA13
3RF23 20-18. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-1B. 06	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-1B. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 20-1B. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-1B. 26	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-1B. 44	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
$\begin{aligned} & \text { 3RF23 20-1C. } 02 \\ & \text { 3RF23 20-1C. } 04 \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OFA08 } \\ & \text { 3RF29 20-OFA08 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA13 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$	3RF29 32-0JA16	$\begin{aligned} & \text { 3RF29 20-OKA13 } \\ & \text { 3RF29 20-OKA16 } \end{aligned}$	3RF29 20-OHA13 3RF29 20-0HA16
3RF23 20-1C. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 20-1C. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-1C. 44	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
$\begin{aligned} & \hline \text { 3RF23 20-1D. } 02 \\ & \text { 3RF23 20-1D. } 04 \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OFA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA13 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$	3RF29 32-0JA16	$\begin{aligned} & \text { 3RF29 20-OKA13 } \\ & \text { 3RF29 20-OKA16 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OHA13 } \\ & \text { 3RF29 20-OHA16 } \end{aligned}$
3RF23 20-1D. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 20-1D. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-1D. 44	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-2A. 02	3RF29 00-0EA18	--	--	--	--	--
3RF23 20-2A. 04	3RF29 00-0EA18	--	--	--	--	--
3RF23 20-2A. 06	3RF29 00-0EA18	--	--	--	--	--
3RF23 20-2A. 22	--	--	--	--	--	--
3RF23 20-2A. 24	--	--	--	--	--	--
3RF23 20-2A. 26	--	--	--	--	--	--
3RF23 20-2C. 02	3RF29 00-0EA18	--	--	--	--	--
3RF23 20-2C. 04	3RF29 00-0EA18	--	--	--	--	--
3RF23 20-2C. 22	--	--	--	--	--	--
3RF23 20-2C. 24	--	--	--	--	--	--
3RF23 20-2D. 22	--	--	--	--	--	--
3RF23 20-2D. 24	--	--	--	--	--	--
3RF23 20-3A. 02	3RF29 00-0EA18	--	3RF29 20-0GA13	--	3RF29 20-0KA13	3RF29 20-0HA13
3RF23 20-3A. 04	3RF29 00-0EA18	--	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-3A. 06	3RF29 00-0EA18	--	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-3A. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 20-3A. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-3A. 26	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-3A.44	3RF29 00-0EA18	--	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16

1) For line voltages in the range from 110 to 230 V , the versions of the 3RF29..-0.A13 function modules can also be combined with more voltage-resistant versions of the solid-state contactors (3RF23..-....4, -.... 5 or -....6).

3RF29 Function Modules

Selection Tables

1) For line voltages in the range from 110 to 230 V , the versions of the 3RF29..-0.A13 function modules can also be combined with more voltage-resistant versions of the solid-state contactors (3RF23..-....4, -.... 5 or -....6).

Recommended assignment of the function modules to the 3RF24 three-phase solid-state contactors

Type	Accessories					
	Converters	Load monitoring Basic	Extended	Heating current monitoring	Power controllers	Power regulators
Type current up to 50 A						
3RF24 ..-1..4.	3RF29 00-0EA18	--	--	--	--	--
3RF24 ..-2..4.	--	--	--	--	--	--
3RF24 ..-3..4.	3RF29 00-0EA18	--	--	--	--	--
3RF24 ..-... 5.	--	--	--	--	--	--

Function Modules

Converters

Overview

Converter for SIRIUS SC semiconductor switching devices
This module is used to convert analog drive signals, such as those output from many temperature controllers, for example, into a pulse-width-modulated digital signal. The connected semiconductor contactors and relays can therefore regulate the output of a load as a percentage.

Area of application

The device is used for conversion from an analog input signal to an on/off ratio. The module can only be used in conjunction with 3RF21 and 3RF23 single-phase solid-state switching devices or 3RF22 and 3RF24 three-phase devices. It can be used on versions with 24 V DC and 24 V AC/DC control supply voltage.

Functions

The analog value from a temperature controller is present at the $0-10 \mathrm{~V}$ terminals. This controls the on-to-off period, as a function of voltage. The period duration is predefined at one second. Conversion of the analog voltage is linear in the voltage range from 0.1 to 9.9 V . At voltages below 0.1 V the connected switching device is not activated, while at voltages above 9.9 V the connected switching device is always activated.

Note: The use of 1-pole solid-state switching devices with converters, power controllers or power regulators on AC loads in full-wave control mode is not recommended. Since the function modules do not synchronize with each other, this may lead to fluctuations in the heating power; optimum compensation can no longer be ensured, especially for setpoints $<50 \%$.

Technical specifications

Control input for converter and load monitoring

Type		3RF29 00-0EA18	3RF29 ..-OHA.
Analog input	V	$0 \ldots 10$	$0 \ldots 10$
Permissible range	V	$-1 \ldots 11$	$-1 \ldots 11$
Input resistance	$\mathrm{k} \Omega$	100	8
Period duration	S	1	1

Selection and ordering data

3RF29 00-0EA18

Function Modules

Load monitoring

Overview

Load monitoring for SIRIUS SC semiconductor switching devices

With the addition of the load monitoring module many faults can be quickly detected by monitoring a load circuit connected to the semiconductor switching device. Examples include the failure of load elements (up to 6 in the basic version or up to 12 in the extended version), alloyed power semiconductors, a lack of voltage or a break in a load circuit. A fault is indicated by one or more LEDs and reported to the controller via a PLC-compatible output.
The operating principle is based on monitoring of the current. This figure is continuously compared with the reference value stored once during commissioning by the simple press of a button. In order to detect the failure of one of several loads, the current decrease must be $1 / 6$ (in the basic version) or $1 / 12$ (in the extended version) of the reference value. In the event of a fault, a contact (NC) is actuated and one or more LEDs indicate the fault.

Area of application

The device is used for monitoring one or more loads (partial loads). The function module can only be used in conjunction with a 3RF21 semiconductor relay or a 3RF23 semiconductor contactor. The devices with spring-loaded connections in the load circuit are not suitable for use with load monitoring modules.

Design

Mounting

Simply snapping the load monitoring module onto the 3RF21 semiconductor relays or 3RF23 semiconductor contactors establishes the control connections to the semiconductor switching devices. Because of the special design, the straight-through transformer of the load monitoring module covers the lower main power connection. The cable to the load is simply pushed through and secured with the terminal screw.

Functions

The function module is activated when an "ON" signal is applied (IN terminal). The module constantly monitors the current level and compares this with the setpoint value.

Start-up

Pressing the "Teach" button switches the device on; the current through the semiconductor switching device is measured and is stored as the setpoint. During this process the two lower (red ${ }^{19}$) LEDs flash alternately; simultaneous maintained light from the 3 $\left(\right.$ red $\left.^{1}\right)$) LEDs indicates the conclusion of the teaching process.

The "Teach" button can also be used to switch on the connected semiconductor switching device briefly for test purposes. In this case the "ON" LED is switched on.

Partial load faults, "basic" load monitoring

If a decrease of at least $1 / 6$ of the stored setpoint value is detected, a fault is signaled. The fault is indicated via a "Fault" LED and by activation of the fault signaling output.

	OK	Fault			
LEDs		Partial load failure/ load short-circuit	Thyristor defect	Mains failure/ fuse rupture	
ON/OFF	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	-	$\boldsymbol{\checkmark}$	
Current flowing	$\boldsymbol{\sim}$	\boldsymbol{v}	$\boldsymbol{\checkmark}$	-	
Group fault	-	\boldsymbol{v}	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	

Function is available
Function not available

Partial load faults, "extended" load monitoring

Depending on the setting of the "response time" potentiometer, a decrease of at least $1 / 12$ of the stored setpoint value after a response time of between 100 ms and 3 s is signaled as a fault. The fault is indicated via a "Load" LED and by activation of the fault signaling output.
The potentiometer can also be used to determine the response behavior of the fault signaling output. When delay values are set in the left-hand half, the fault signal is stored. This can only be reset by switching on and off by means of the control supply voltage.
When settings are made on the right-hand side, the fault output is automatically reset after the deviation has been corrected.

Voltage compensation, "extended" load monitoring

In addition to the current, the load voltage is also monitored. This makes it possible to compensate for influences on the current strength resulting from voltage fluctuations.

Thyristor fault

If a current greater than the residual current of the switching device is measured in the deenergized state, the device triggers a thyristor fault after the set time delay. This means that the fault output is activated and the "Fault" ("Thyristor"1)) LED lights up.

Supply fault

If no current is measured in the energized state, the device triggers a supply fault after the set time delay. This means that the fault output is activated and the "Fault" ("Supply"1) LED lights up. 1) "Extended" load monitoring

Selection and ordering data

Rated operational current l_{e}	Rated operational voltage U_{e}	Rated control supply voltage U_{s} AC 110 V	Rated control supply voltage U_{s} AC/DC 24 V	Std. Pack Qty	Weight per pack approx	Rated control supply voltage U_{s} DC 24 V	Std. Pack Qty	Weight per pack approx
	V	Order No.	Order No.		kg	Order No.		kg
Basic load monitoring								
$\begin{aligned} & 6 \\ & 20 \end{aligned}$	-	-	-			$\begin{aligned} & \text { 3RF29 06-0FA08 }{ }^{1} \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	1 unit	0.050
Extended load monitoring								
$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 400 \ldots 600 \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA33 } \\ & \text { 3RF29 20-0GA36 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA13 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$	-		
$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 400 \ldots 600 \end{aligned}$	3RF29 50-0GA33 3RF29 50-0GA36	3RF29 50-0GA13 3RF29 50-0GA16	1 unit 1 unit	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$	-		
$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 400 \ldots 600 \end{aligned}$	3RF29 90-0GA33 3RF29 90-0GA36	3RF29 90-0GA13 3RF29 90-0GA16	1 unit 1 unit	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$	-		

[^2]
3RF29 Function Modules

Heating current monitoring

Overview

Heating current monitoring for 3RF2 single-phase solidstate switching devices
Many faults can be quickly detected by monitoring a load circuit connected to the solid-state switching device, as made possible with this module. Examples include the failure of up to 6 load elements, alloyed power semiconductors, a lack of voltage or a break in a load circuit. A fault is indicated by LEDs and reported to the controller by way of a relay output (NC contact).
The principle of operation is based on permanent monitoring of the current strength. This figure is continuously compared with the reference value stored once during start-up. In order to detect the failure of one of several loads, the current difference must be $1 / 6$ of the reference value. In the event of a fault, an output is actuated and the LEDs indicate the fault.
The heating current monitoring has a teach input and therefore differs from the load monitoring. This remote teaching function enables simple adjustment to changing loads without manual intervention.

Special versions: deviations from the standard version

3RF29 ..-OJA1.-1KK0

If the current is below 50% of the lower teach current during the teach routine, the device will go into "Standby" mode; the LOAD LED will flicker. The device thus detects a non-connected load, e. g. channels not required for tool heaters, and does not signal a fault. This mode can be reset by re-teaching.

Application

The device is used for monitoring one or more loads (partial loads). The function module can only be used in conjunction with a 3RF21 solid-state relay or a 3RF23 solid-state contactor. The devices with spring-loaded connections in the load circuit are not suitable.

Selection and ordering data

| | Rated operational
 current I_{e} | Rated operational
 voltage U_{e} | Order No. |
| :--- | :--- | :--- | :--- | :--- |

1) Supplied without control connector. The control connector can be purchased from from Wieland by quoting Article No. 8213 B/6VR (PCB connector).
$\left.\begin{array}{l|l|l|l} & \text { Version } & \text { Order No. } & \begin{array}{c}\text { Std. } \\ \text { Pack } \\ \text { Qty }\end{array} \\ \hline \text { Oper pack } \\ \text { approx. }\end{array}\right\}$
[^3]
3RF29 Function Modules

Power controllers

Overview

Power controllers for 3RF2 single-phase solid-state switching devices
The power controller is a function module for the autonomous power control of complex heating systems and inductive loads.

The following functions have been integrated:

- Power controller for adjusting the power of the connected load. Here, the setpoint value is set with a rotary knob on the module as a percentage with reference to the 100% power stored as a setpoint value.
- Inrush current limitation: With the aid of an adjustable voltage ramp, the inrush current is limited by means of phase control This is useful above all with loads such as lamps or infrared lamps which have an inrush transient current.
- Load circuit monitoring for detecting load failure, partial load faults, alloyed power semiconductors, lack of voltage or a break in the load circuit.

Special versions:
deviations from the standard version

3RF29 04-OKA13-0KC0

During the teaching process the connected solid-state relay or contactor is not activated; i. e. no current flow takes place. No current reference value is stored. No part-load monitoring!

3RF29 ..-OKA1.-OKT0

No part-load monitoring!

Application

The power controller can be used for:

- Complex heating systems
- Inductive loads
- Loads with temperature-dependent resistor
- Loads with ageing after long-time service
- Simple indirect control of temperature

The power controller can be used on the instantaneously switching 3RF21 and 3RF23 solid-state switching devices (singlephase). If only the full-wave operating mode is used, the power controller can also be used on the "zero-point switching" solidstate relays and contactors.

Power control

The power controller adjusts the power in the connected load by means of a solid-state switching device depending on the setpoint selection. It does not compensate for changes in the mains voltage or load resistance. The setpoint value can be predefined externally as a 0 to 10 V signal or internally by means of a potentiometer. Depending on the setting of the potentiometer $\left(t_{\mathrm{R}}\right)$, the control is carried out according to the principle of full-wave control or generalized phase control.

Full-wave control

In this operating mode the output is adjusted to the required setpoint value changing the on-to-off period. The period duration is predefined at one second.

Generalized phase control

In this operating mode the output is adjusted to the required set point value by changing the current flow angle. In order to observe the limit values of the conducted interference voltage for industrial networks, the load circuit must include a reactor with a rating of at least $200 \mu \mathrm{H}$.

Selection and ordering data

Function Modules

Power control regulators

Overview

Power controllers for SIRIUS SC semiconductor switching devices
This module provides similar functionality to a power control regulator.

The following functions are integrated:
Power control regulator with proportional-action control for adjusting the power of the connected load. Here, the setpoint is set with a rotary knob on the module as a percentage with reference to the 100% power stored as a setpoint. In this way the power is kept constant even in the event of voltage fluctuations or a change in load resistance.
Inrush current limitation: With the aid of an adjustable voltage ramp, the inrush current is limited by means of phase control. This is useful above all with loads such as lamps which have an inrush transient current.

Load circuit monitoring for detecting load failure, alloyed power semiconductors, lack of voltage or a break in the load circuit.

Area of application

The power controller adjusts the current in the connected load by means of a semiconductor switching device depending on a setpoint. This compensates for changes in the mains voltage or in the load resistance. The setpoint can be predefined externally as a 0 to 10 V signal or internally by means of a potentiometer. Depending on the setting of the potentiometer (t_{R}), the adjustment is carried out according to the principle of full-wave control or generalized phase control.

Full-wave control

In this operating mode the output is adjusted to the required setpoint by changing the on-to-off period. The period duration is predefined at one second.

Generalized phase control

In this operating mode the output is adjusted to the required setpoint by changing the current flow angle. In order to observe the limit values of the conducted interference voltage for industrial power systems, a choke rated at at least $200 \mu \mathrm{H}$ must be included in the load circuit.

Design

Mounting

Easy snapping onto the 3RF21 semiconductor relays or 3RF23 semiconductor contactors establishes the connections to the semiconductor switching devices. Because of the special design, the straight-through transformer of the power controller module covers the lower main power connection. The cable to the load is simply pushed through and secured with the terminal screw.

Functions

Start-up

Pressing the "Teach" button switches the device on; the current through the semiconductor switching device and the mains voltage are detected and stored. The resultant output is taken as the 100% output for the setpoint selection. During this process the two lower red LEDs flash alternately. Simultaneous maintained light from the three red LEDs indicates the completion of the "Teach" process.
The "Teach" button can also be used to switch on the connected semiconductor switching device briefly for test purposes. In this case the "ON" LED is switched on.

Setpoint selection

The setting on the setpoint potentiometer (P) determines how the setpoint selection is to be made:

External setpoint selection

At 0% the setpoint selection is set via an external $0-10 \mathrm{~V}$ analog signal (terminals $\mathrm{IN} / 0-10 \mathrm{~V}$). The device is switched on and off via the power supply (terminals A1 / A2).

Internal setpoint selection

Above 0% the setpoint is set using the potentiometer. To allow this, the potential at terminal A1 must additionally be applied at the IN terminal. After removal of the "ON" signal, the switching module is switched off.

Inrush current limitation

The ramp time (t_{R}) for a voltage ramp on switching on is set with the potentiometer for the purpose of inrush current limitation. If a time longer than 0 s is set, the device operates according to the phase-angle principle. If 0 s is set, there is no voltage ramp and the device operates according to the principle of full-wave control.

Load fault

If upon switching on with voltage applied the current flowing is not greater than the residual current of the switching device, the device triggers a load fault. The fault relay is activated and the "Load" LED lights up.

Thyristor fault

If a current greater than the residual current of the switching device is measured in the deenergized state, the device triggers a thyristor fault. The fault relay is activated and the "Thyristor" LED lights up.

Supply fault

If no current is measured in the energized state, the device triggers a supply fault. The fault relay is activated and the "Supply" LED lights up.

Selection and ordering data

3RF29 Function Modules

Power control regulators

Overview

Power control regulators for SIRIUS solid-state switching devices

The power control regulator is a function module for the autonomous power control regulation of complex heating systems and inductive loads, for the operation of loads with temperaturedependent resistors or long-term aging, and for simple indirect temperature control.
The power control regulator can be used on the 3RF21 and 3RF23 instantaneous switching solid-state switching devices (single-phase). If only the full-wave control mode is used, the power control regulator can also be used on the zero-pointswitching solid-state relays and contactors.

Application

The power control regulator sets the load current of the solidstate switching device depending on a setpoint value as a percentage. Changes in the mains voltage or in the load resistance are not compensated in this case. The modulation, the On/off ratio or the phase angle, remains unchanged in accordance with the setpoint. The autonomous power control regulation is performed between 0 and 100% of the setpoint value

Full-wave control

If the left potentiometer t_{R} is set to 0 s (= far left), the power control regulator works according to the principle of full-wave control. The power set, be it internal or external, is converted into a pulse-width-modulated digital signal. The power control regulator controls the On and Off time of the solid-state switching device within a fixed period duration of 1 s so that the specified power is applied to the load. The "ON" LED flashes in the same rhythm as the solid-state switching device switches on and off.

Generalized phase control

If the left potentiometer t_{R} is set to higher than 0 s , the power control regulator works according to the principle of generalized phase control. With generalized phase control, a choke rated at at least $200 \mu \mathrm{H}$ must be included in the load circuit in order to observe the limit values of the conducted interference voltage for industrial networks.

Design

Mounting

Easy snapping onto the 3RF21 solid-state relays or 3RF23 solidstate contactors establishes the connections to the solid-state switching devices. Because of the special design, the straightthrough transformer of the function module covers the lower main power connection. The cable to the load is simply pushed through and secured with the terminal screw.

Function

Setpoint selection

The setpoint is selected either internally using the right-hand potentiometer P with $0 \ldots 100 \%$ on the module or externally through the analog input $0 \ldots 10 \mathrm{~V}$.
100 \% corresponds in full-wave control to permanently On and in generalized phase control to a conduction angle of 180° and hence maximum power.
When the setpoint is selected internally the module is controlled through the IN terminal. The terminal 10 then has no function.

Input characteristic curve
When the setpoint is selected externally (potentiometer P set far left $=0 \%$) the module is controlled by applying the analog voltage $0 \ldots 10 \mathrm{~V}$. $0 \ldots 10 \mathrm{~V}$ corresponds to $0 \ldots 100 \%$ power. Conversion of the voltage is linear between 0.1 and 9.9 V . Below 0.1 V the switching device remains off; at voltages above 9.9 V the power is always set to 100%.

Inrush current limitation

The ramp time (t_{R}) for a voltage ramp on switching on is set with the left potentiometer for the purpose of inrush current limitation. The set time refers to a power of 100%. If, for example, a ramp time of 10 s is set and the selected power is 60%, then a power of 60% is reached after approx. 6 s .

Line and thyristor monitoring

The power control regulator recognizes supply failures and thyristor faults. The faults are indicated by the LEDs on the module and the fault output is activated.

Solid-State Relays

3RF21 Solid-state relays - technical data

Overview

22.5 mm semiconductor relays

With its compact design, which stays the same even at currents of up to 88 A , the 3RF21 semiconductor relay is the ultimate in space-saving construction, at a width of 22.5 mm . The logical connection arrangement, with the power infeed from above and connection of the load from below, ensures clean installation in the control cabinet.

Technical specifications

Solid-State Switching Devices

Solid-State Relays

3RF21 Solid-state - technical data

The heat transfer of the solid-state relays has been considerably improved.
Please note the highlighted values when dimensioning the heat sink.

> The current $I_{\max }$ provides information about the performance of the solid-state relay. The actual permitted rated operational current I_{e} can be smaller depending on the connection method and cooling conditions.

Note:
The required heat sinks for the corresponding load currents can be determined from the characteristic curves (see page 8/49). The minimum thickness values for the mounting surface must be observed.

Type	Rated impulse withstand capacity $\mathbf{I}_{\text {tsm }}$	$\mathbf{I}^{\mathbf{2} \boldsymbol{t} \text { value }}$
	A	$\mathrm{A}^{2} \mathrm{~s}$
Main circuit		
3RF21 20-.....	200	200
3RF21 30-..A.2	300	450
3RF21 30-..A.4	300	450
3RF21 30-..A.5	300	450
3RF21 30-..A.6	400	800
3RF21 50-....	600	1800
3RF21 70-..A.2	1200	7200
3RF21 70-...4	1200	7200
3RF21 70-..5	1200	7200
3RF21 70-..A.6	1150	6600
3RF21 90-....	1150	6600

Type		3RF21 ..-.... 2	3RF21 ..-... 4	3RF21 ..-... 5	3RF21 ..-... 6
Main circuit					
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$ - Operating range - Rated frequency	$\begin{aligned} & \text { V } \\ & \text { V } \\ & \mathrm{Hz} \end{aligned}$	$\begin{aligned} & 24 \ldots 230 \\ & 20 \ldots 253 \\ & 50 / 60 \pm 10 \% \end{aligned}$	$\begin{aligned} & 48 \ldots 460 \\ & 40 \ldots 506 \end{aligned}$	$\begin{aligned} & 48 \ldots 600 \\ & 40 \ldots 660 \end{aligned}$	$\begin{aligned} & 48 \ldots 600 \\ & 40 \ldots 660 \end{aligned}$
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$	V	600			
Blocking voltage	V	800	1200		1600
Rage of voltage rise	$\mathrm{V} / \mu \mathrm{S}$	1000			

Type		3RF21 ..-...0.	3RF21 ..-... 1.		3RF21 ..-... 2.	3RF21 ..-...4.
Control circuit						
Method of operation		DC operation	AC/DC operation		AC operation	DC operation
Rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$	V	24 acc. to EN 61131-2	24 AC	24 DC	110... 230	$4 \ldots 30$
Rated frequency of the control supply voltage	Hz	--	$\begin{aligned} & 50 / 60 \\ & \pm 10 \% \\ & \hline \end{aligned}$	--	50/60 ± 10 \%	--
Control supply voltage, max.	V	30	26.5 AC	30 DC	253	30
Typical actuating current	mA	20 / Low Power: 6.5 ${ }^{1 \text { 1 }}$	20	20	15	20
Response voltage	V	15	14 AC	15 DC	90	4
Drop-out voltage	V	5	5 AC	5 DC	40	1
Operating times						
- ON-delay	ms	$\begin{aligned} & 1+\max . \text { one } \\ & \text { half-wave }^{2)} \end{aligned}$	$10+m a$ half-wav		$\begin{aligned} & 40+\max _{\text {. one }} \text { one } \\ & \text { half-wave }^{2)} \end{aligned}$	1 + max. one half-wave ${ }^{2)}$
- OFF-delay	ms	$1+$ max. one half-wave	$\begin{aligned} & 15+\text { ma } \\ & \text { half-wav } \end{aligned}$		40 + max. one half-wave	1 + max. one half-wave

[^4]
Solid-State Relays

3RF21 solid-state relays - technical data

Fused version with semiconductor protection (similar to type of coordination "2")1)

The semiconductor protection for the SIRIUS controls can be used with different protective devices. This allows protection by means of LV HRC fuses of gG operational class or miniature circuit breakers. Siemens recommends the use of special SITOR semiconductor fuses. The table below lists the maximum permissible fuses for each SIRIUS control

If a fuse is used with a higher rated current than specified, semiconductor protection is no longer guaranteed. However, smaller fuses with a lower rated current for the load can be used without problems.

For protective devices with gG operational class and for SITOR 3NE1 all-range fuses, the minimum cross-sections for the conductor to be connected must be taken into account.

Type	All-range fuses LV HRC design gR/SITOR 3NE1		Semiconductor fuses/partial-range fuses			
		Cylindrical design gR/NEOZED ${ }^{2)}$ SILIZED 5SE1	LV HRC design aR/SITOR 3NE8	Cylindrical design aR/SITOR $10 \mathrm{~mm} \times 38 \mathrm{~mm}$ 3NC1 0	aR/SITOR $14 \mathrm{~mm} \times 51 \mathrm{~mm}$ 3NC1 4	aR/SITOR $22 \mathrm{~mm} \times 58 \mathrm{~mm}$ 3NC2 2
$\begin{aligned} & \hline \text { 3RF21 20-... } \\ & \text { 3RF21 20-..4 } \\ & \text { 3RF21 20-...5 } \end{aligned}$	3NE1 814-0 3NE1 813-04) 3NE1 $813-0^{4)}$	5SE1 325 5SE1 320 5SE1 320	3NE8 015-1 3NE8 015-1 3NE8 015-1	$\begin{aligned} & \text { 3NC1 020 } \\ & \text { 3NC1 } 016^{4)} \\ & \text { 3NC1 } 016^{4)} \end{aligned}$	3NC1 420 3NC1 420 3NC1 420	$\begin{aligned} & \text { 3NC2 } 220 \\ & \text { 3NC2 } 220 \\ & \text { 3NC2 } 220 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF21 30-...2 } \\ & \text { 3RF21 30-..4 } \\ & \text { 3RF21 30-...5) } \\ & \text { 3RF21 30-... } 6 \end{aligned}$	$\begin{aligned} & \text { 3NE1 815-04) } \\ & \text { 3NE1 815-0 } \\ & \text { 3NE1 815-04) } \\ & \text { 3NE1 } 815-0^{4)} \end{aligned}$	5SE1 335 5SE1 3254) 5SE1 3254)	$\begin{aligned} & \text { 3NE8 003-1 } \\ & \text { 3NE8 003-1 } \\ & \text { 3NE8 003-1 } \\ & \text { 3NE8 003-1 } \end{aligned}$	3NC1 032 3NC1 0254) 3NC1 0254) 3NC1 032	3NC1 432 3NC1 430 3NC1 430 3NC1 432	$\begin{aligned} & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF21 50-...2 } \\ & \text { 3RF21 50...4 } \\ & \text { 3RF21 50-...5 }{ }^{3} \\ & \text { 3RF21 50-... } \end{aligned}$	3NE1 817-0 3NE1 802-04) 3NE1 802-04) 3NE1 803-0 ${ }^{4)}$	5SE1 350 5SE1 3354) 5SE1 $335^{4)}$ --	3NE8 017-1 3NE8 017-1 3NE8 017-1 3NE8 017-1	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	3NC1 450 3NC1 450 3NC1 450 3NC1 450	$\begin{aligned} & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \end{aligned}$
3RF21 70-... $\mathbf{2}^{5)}$ 3RF21 70...4 $4^{5)}$ 3RF21 70 $-\ldots 5^{35) 5)}$ 3RF21 70.$- .6^{5)}$	3NE1 820-0 3NE1 020-2 3NE1 020-2 3NE1 020-2	$\begin{aligned} & \text { 5SE1 } 363^{4)} \\ & \text { 5SE1 } 363^{4)} \\ & -- \end{aligned}$	$\begin{aligned} & \text { 3NE8 020-1 } \\ & \text { 3NE8 020-1 } \\ & \text { 3NE8 020-1 } \\ & \text { 3NE8 020-1 } \end{aligned}$	$\begin{gathered} -- \\ -- \\ -- \\ \hline- \end{gathered}$		$\begin{aligned} & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \end{aligned}$
	3NE1 021-2 3NE1 021-2 3NE1 021-2 3NE1 817-04)	-- -- --	3NE8 021-1 3NE8 021-1 3NE8 021-1 3NE8 021-1	-- -- --	-- -- --	$\begin{aligned} & \text { 3NC2 200 } \\ & \text { 3NC2 } 280^{4)} \\ & \text { 3NC2 2804) } \\ & \text { 3NC2 } 280^{4)} \end{aligned}$

Type	Cable and line protection fuses				
	LV HRC design ${ }^{4}$	Cylindrical design ${ }^{4}$			DIAZED ${ }^{4}$
	gG	gG	gG	gG	quick
	3NA2	$\begin{aligned} & 10 \mathrm{~mm} \times 38 \mathrm{~mm} \\ & \text { 3NW6 } 0 \end{aligned}$	$\begin{aligned} & 14 \mathrm{~mm} \times 51 \mathrm{~mm} \\ & \text { 3NW6 } 1 \end{aligned}$	$22 \mathrm{~mm} \times 58 \mathrm{~mm}$ 3NW6 2	5SB
3RF21 20-... 2	3NA2 803	3NW6 000-1	3NW6 101-1	--	5SB1 41
3RF21 20-... 4	3NA2 801		3NW6 101-1	--	5SB1 41
3RF21 20-....5 ${ }^{3)}$	3NA2 801	--	3NW6 101-1	--	5SB1 41
3RF21 30-...2	3NA2 803	--	3NW6 103-1	--	5SB1 71
3RF21 30-... 4	3NA2 803	--	3NW6 101-1	--	5SB171
3RF21 30-....5 ${ }^{3}$)	3NA2 803	--	3NW6 101-1	--	5SB1 71
3RF21 30-... 6	3NA2 803-6	--	--	--	--
3RF21 50-... 2	3NA2 810	--	3NW6 107-1	3NW6 207-1	5SB3 11
3RF21 50-... 4	3NA2 807	--	--	3NW6 205-1	5SB3 11
3RF21 50-....5 ${ }^{3)}$	3NA2 807	--	--	3NW6 205-1	5SB3 11
3RF21 50-... 6	3NA2 807-6	--	--	--	--
3RF21 70-...2 ${ }^{5}$	3NA2 817	--	--	3NW6 217-1	
3RF21 70-...4 ${ }^{5}$	3NA2 812	--	--	3NW6 212-1	5SB3 31
3RF21 70-...5 $5^{315)}$	3NA2 812	--	--	3NW6 212-1	--
3RF21 70-...6 ${ }^{5}$	3NA2 812-6	--	--	--	--
3RF21 90-...2 ${ }^{5 \text {) }}$	3NA2 817	--	--	3NW6 217-1	--
3RF21 90-...4 ${ }^{5}$	3NA2 812	--	--	3NW6 212-1	--
3RF21 90-....53)5)	3NA2 812	--	--	3NW6 212-1	--
3RF21 90-...6 ${ }^{5}$	3NA2 812-6	--	--	---	--

Suitable fuse holders, fuse bases and controls can be found in
Catalog LV 1, Chapter 19.

[^5]
Solid-State Switching Devices

Solid-State Relays

3RF20 Solid-state relays - technical data

Overview

45 mm semiconductor relays

The semiconductor relays with a width of 45 mm provide for connection of the power supply lead and the load from above. This makes it easy to retrofit existing semiconductor relays. The connection of the control cable also saves space in much the same way as the 22.5 mm design, as it is simply plugged on.

Technical specifications

Type		3RF20			
General data					
Ambient temperature during operation, derating at $40^{\circ} \mathrm{C}$ when stored	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{array}{r} -25 \ldots+60 \\ -55 \ldots+80 \\ \hline \end{array}$			
Site altitude	m	0... 1000; derating from 1000			
Shock resistance acc. to IEC 60068-2-27	g / ms	15/11			
Vibration resistance acc. to IEC 60068-2-6	g	2			
Degree of protection		IP20			
Electromagnetic compatibility (EMC) Emitted interference - Conducted interference voltage IEC acc. to 60947-4-3 - Emitted, high-frequency interference voltage acc. to IEC 60947-4-3		Class A for industrial applications Class A for industrial applications			
Noise immunity - Electrostatic discharge acc. to IEC 61000-4-2 (corresponds to degree of severity 3) - Induced RF fields acc. to IEC 61000-4-6 - Burst acc. to IEC 61000-4-4 - Surge acc. to IEC 61000-4-5	kV MHz kV kV	Contact discharge 4; air discharge 8; behavior criterion2			
Connection, main contacts, screw connection					
- Conductor cross-sections - Solid - Finely stranded with end sleeve - Solid or stranded, AWG cables - Terminal screw - Tightening torque	mm^{2} mm^{2} AWG Nm lb.in	$\begin{aligned} & 2 \times(1.5 \ldots 2.5)^{1)}, 2 \times(2.5 \ldots 6)^{1)} \\ & \left.2 \times(1 \ldots 2.5)^{1}\right), 2 \times(2.5 \ldots 6)^{1)}, 1 \times 10 \\ & 2 \times(14 \ldots .10) \end{aligned}$			
Connection, auxiliary/control contacts, screw connection Conductor cross-section Insulation stripping length Terminal screw - Tightening torque	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm} \\ & \\ & \mathrm{Nm} \\ & \mathrm{lb} . \mathrm{in} \end{aligned}$	$1 \times(0.5 \ldots 2.5) ; 2 \times(0.5 \ldots 1.0) ;$ AWG $20 \ldots 12$7M 3$0.5 \ldots 0.6$$4.5 \ldots 5.3$			
Type		3RF20 .0-1AA. 2	3RF20 .0-1AA. 4	3RF20..-.... 5	3RF20 .0-1AA. 6
Main circuit					
Rated operational voltage $\boldsymbol{U}_{\mathbf{e}}$ - Tolerance - Rated frequency	$\begin{aligned} & V \\ & \% \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 24 \ldots 230 \\ & -15 /+10 \\ & 50 / 60 \end{aligned}$	$48 \ldots 460$	$48 \ldots 600$	$400 \ldots 600$
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$	V	600			
Blocking voltage	V	800	1200	1200	1600
Rage of voltage rise	V/us	1000			

Solid-State Relays

3RF20 Solid-state relays - technical data

The heat transfer of the solid-state relays has been considerably improved.
Please note the highlighted values when dimensioning the heat sink.

Type	$\begin{aligned} & \boldsymbol{I}_{\max }{ }^{\mathbf{1}} \\ & \text { at } R_{\text {thha }} / T_{\mathrm{U}}=40^{\circ} \mathrm{C} \end{aligned}$		I_{e} acc. to IEC 60947-4-3 at $R_{\text {thnal }} / T_{\mathrm{u}}=40^{\circ} \mathrm{C}$		I_{e} acc. to UL/CSA at $R_{\text {thha }} / T_{\mathrm{u}}=50^{\circ} \mathrm{C}$		Power loss at $I_{\text {max }}$ W	Minimum load current A	Off-state currentmA
	A	K/W	A	K/W	A	K/W			
Main circuit									
3RF2020-1.A..	20	2.00	20	1.70	20	1.30	28.6	0.1	10
3RF2030-1.A..	30	1.45	30	1.45	30	1.25	44.2	0.5	10
3RF2050-1.A..	50	0.85	50	0.85	50	0.70	66	0.5	10
3RF2070-1.A..	70	0.50	50	1.15	50	1.00	94	0.5	10
3RF2090-1.A..	88	0.55	50	1.40	50	1.00	118	0.5	10

1) The current $I_{\text {max }}$ provides information about the performance of the solid-state relay. The actual permitted rated operational current I_{e} can be smaller depending on the connection method and cooling conditions.

Note:
The required heat sinks for the corresponding load currents can be determined from the characteristic curves (see page 8/49). The minimum thickness values for the mounting surface must be observed.

	Rated impulse withstand capacity $I_{\text {tsm }}$	$1^{2} t$ value				
Type	A	$A^{2} \mathrm{~S}$				
Main circuit						
3RF20 20-1AA..	200	200				
3RF20 30-1AA. 2	300	450				
3RF20 30-1AA. 4	300	450				
3RF20 30-1AA. 6	400	800				
3RF20 50-1AA..	600	1800				
3RF20 70-1AA. 2	1200	7200				
3RF20 70-1AA. 4	1200	7200				
3RF20 70-1AA. 6	1150	6600				
3RF20 90-1AA..	1150	6600				
Type				3RF20 .0-1AA0.	3RF20 .0-1AA4.	3RF20 .0-1AA2.
Control circuit						
Method of operat				DC operation	DC operation	AC operation
Rated control sup	voltage $U_{\text {s }}$		V	24 acc. to EN 61131-2	4 ... 30V DC	110 ... 230
Max. rated contro	Itage		V	30	30	253
Rated control cur	t at U_{s}		mA	20	20	15
Rated frequency	he control supply voltage		Hz	-	-	50/60
Response voltag current			$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 15 \\ & >2 \end{aligned}$	$\begin{aligned} & 4 \\ & >2 \end{aligned}$	$\begin{aligned} & 90 \\ & 2 \end{aligned}$
Drop-out voltage			V	5	1	40
Operating times closing time opening time			ms	$1+$ max. one half wave $1+$ max. one half wave	$1+$ max. one half wave $1+$ max. one half wave	$40+$ max. one half wave 40 + max. one half wave

Order No.	All-range fuse LV design gR/SITOR 3NE1	Semiconductor protection fuse Cylindrical design			Cable and line protection fuse				
						Cylindrical			DIAZED quick
		$10 \times 38 \mathrm{~mm}$ aR/SITOR 3NC1 0	$14 \times 51 \mathrm{~mm}$ aR/SITOR 3NC1 4	$22 \times 58 \mathrm{~mm}$ aR/SITOR 3NC2 2	gL/gG/3NA	$\begin{aligned} & 10 \times 38 \mathrm{~mm} \\ & \mathrm{gL} / \mathrm{gG} 3 \mathrm{NW} \end{aligned}$	$14 \times 51 \mathrm{~mm}$ gL/gG 3NW	$\begin{aligned} & 22 \times 58 \mathrm{~mm} \\ & \mathrm{gL} / \mathrm{gG} 3 \mathrm{NW} \end{aligned}$	5S
Fused design with semiconductor protection									
$\begin{aligned} & \text { 3RF20 20-1 AA. } 2 \\ & \text { 3RF20 20-1A. } 4 \end{aligned}$	$\begin{aligned} & \text { 3NE1 814-0 } \\ & \text { 3NE1 813-0 } \end{aligned}$	$\begin{aligned} & \text { 3NC1 } 020 \\ & \text { 3NC1 } 016 \end{aligned}$	$\begin{aligned} & 3 N C 1420 \\ & \text { 3NC1 } 420 \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 220 \\ & \text { 3NC2 } 220 \end{aligned}$	$\begin{aligned} & \text { 3NA2 } 803 \\ & \text { 3NA2 } 801 \end{aligned}$	3NW6 001-1	3NW6 101-1 3NW6 101-1		$\begin{aligned} & \text { 5SB1 } 71 \\ & \text { 5SB1 } 41 \end{aligned}$
3RF20 30-1AA. 2 3RF20 30-1AA. 4 3RF20 30-1AA. 6	3NE1 815-0 3NE1 815-0 3NE1 815-0	$\begin{aligned} & \text { 3NC1 032 } \\ & \text { 3NC1 025 } \\ & \text { 3NC1 032 } \end{aligned}$	3NC1 432 3NC1 432 3NC1 432	$\begin{aligned} & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \end{aligned}$	3NA2 803 3NA2 803 3NA2 803-6	-	3NW6 103-1 3NW6 101-1	-	$\begin{aligned} & \text { 5SB3 } 11 \\ & \text { 5SB1 } 71 \end{aligned}$
$\begin{aligned} & \text { 3RF20 50-1AA. } 2 \\ & \text { 3RF20 50-1AA. } 4 \\ & \text { 3RF20 50-1AA. } 6 \end{aligned}$	3NE1 817-0 3NE1 802-0 3NE1 803-0	-	$\begin{aligned} & \text { 3NC1 } 450 \\ & \text { 3NC1 } 450 \\ & \text { 3NC1 } 450 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3NA2 } 810 \\ & \text { 3NA2 } 807 \\ & \text { 3NA2 807-6 } \\ & \hline \end{aligned}$	-	3NW6 107-1	3NW6 207-1 3NW6 205-1	$\begin{aligned} & \text { 5SB3 } 21 \\ & \text { 5SB3 } 11 \end{aligned}$
3RF20 70-1AA. $\mathbf{2}^{2}$ 3RF20 70-1AA. 4 3RF20 70-1AA. 6	3NE1 820-0 3NE1 020-2 3NE1 020-2	-	-	$\begin{aligned} & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6	-	-	3NW6 217-1 3NW6 212-1	$\begin{aligned} & \text { 5SB3 } 31 \\ & \text { 5SB3 } 21 \end{aligned}$
3RF20 90-1AA. 2^{2} 3RF20 90-1AA. 4 3RF20 90-1AA. 6	3NE1 021-2 3NE1 O21-2 3NE1 020-2	-	-	$\begin{aligned} & 3 N C 2200 \\ & 3 N C 2280 \\ & 3 N C 2280 \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6	-	-	3NW6 217-1 3NW6 212-1	$\begin{aligned} & \text { 5SB3 } 31 \\ & \text { 5SB3 } 21 \end{aligned}$

1) Type of coordination "2" acc. to EN 60947-4-1:

In the event of a short-circuit, the control gear in the load feeder must not endanger persons or the installation. They must be suitable for further operation. For fused configurations, the protective device must be replaced.
2) These versions can also be protected against short-circuit with miniature circuit-breakers as described on page 7/11.

Solid-State Switching Devices

Solid-State Relays

3RF22 Solid-state relays - technical data

Overview

45 mm solid-state relays
The 3RF22 solid-state relays with a width of 45 mm provide space advantages over solutions with single-phase versions. The logical connection arrangement, with the power infeed from above and connection of the load from below, ensures tidy installation in the control cabinet.

Important features

- LED indicators
- Variety of connection techniques
- Plug-in control connection
- Degree of protection IP20
- Zero-point switching,
- Two or three-phase controlled

Technical specifications

Type		3RF22 ..-1....	3RF22 ..-2....	3RF22 ..-3....
General data				
Ambient temperature - During operation, derating from $40^{\circ} \mathrm{C}$ - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -55 \ldots+80 \\ & \hline \end{aligned}$		
Site altitude	m	0 ... 1000; > 1000 ask Technical As	ssistance	
Shock resistance acc. to IEC 60068-2-27	g / ms	15/11		
Vibration resistance acc. to IEC 60068-2-6	g	2		
Degree of protection		IP20		IP00
Insulation strength at $50 / 60 \mathrm{~Hz}$ (main/control circuit to ground)	V rms	4000		
Electromagnetic compatibility (EMC) - Emitted interference - Conducted interference voltage acc. to IEC 60947-4-3 - Emitted, high-frequency interference voltage acc. to IEC 60947-4-3 - Interference immunity - Electrostatic discharge acc. to IEC 61000-4-2 (corresponds to degree of severity 3) - Induced RF fields acc. to IEC 61000-4-6 - Burst acc. to IEC 61000-4-4 - Surge acc. to IEC 61000-4-5	kV MHz kV kV	Class A for industrial applications Class A for industrial applications Contact discharge 4; air discharge 0.15 ... 80; $140 \mathrm{~dB} \mu \mathrm{~V}$; behavior crit $2 / 5.0 \mathrm{kHz}$; behavior criterion 1 Conductor - ground 2; conductor	8; behavior criterion 2 terion 1 - conductor 1; behavior criter	
Connection technique		Screw terminal	Spring-loaded connection	Ring terminal end connection
Main contact connection - Conductor cross-section - Solid - Finely stranded with end sleeve - Finely stranded without end sleeve - Solid or stranded, AWG conductors - Stripped length - Terminal screw - Tightening torque, $\varnothing 5 \ldots 6 \mathrm{~mm}, \mathrm{PZ} 2$ - Cable lug - acc. to DIN 46234 - acc. to JIS C 2805	mm^{2} mm^{2} mm^{2} mm Nm lb.in	$\begin{aligned} & 2 \times(1.5 \ldots 2.5), 2 \times(2.5 \ldots 6) \\ & 2 \times(1 \ldots 2.5), 2 \times(2.5 \ldots 6), 1 \times 10 \\ & --2 \times(\text { AWG } 14 \ldots 10) \\ & 10 \\ & \text { M4 } \\ & 2 \ldots 2.5 \\ & 18 \ldots 22 \end{aligned}$	$\begin{aligned} & 2 \times(0.5 \ldots 2.5) \\ & 2 \times(0.5 \ldots 1.5) \\ & 2 \times(0.5 \ldots .5) \\ & 2 \times(\text { AWG } 18 \ldots 14) \\ & 10 \\ & -- \\ & \\ & -- \end{aligned}$	$\begin{aligned} & \text {-- } \\ & -- \\ & -- \\ & -- \\ & \text { M5 } \\ & 2.5 \ldots 2 \\ & 18 \ldots 22 \\ & \text { 5-2.5 ... 5-25 } \\ & \text { R } 2-5 \ldots 14-5 \\ & \hline \end{aligned}$
Connection, auxiliary/control contacts - Conductor cross-section, with or without end sleeve - Stripped length - Terminal screw - Tightening torque, Ø 3.5, PZ 1	mm AWG mm Nm lb.in	$\begin{aligned} & 1 \times(0.5 \ldots 2.5), 2 \times(0.5 \ldots 1.0) \\ & 20 \ldots 12 \\ & 7 \\ & \text { M3 } \\ & 0.5 \ldots 0.6 \\ & 4.5 \ldots 5.3 \end{aligned}$	$\begin{aligned} & 0.5 \ldots 2.5 \\ & 20 \ldots 12 \\ & 10 \\ & --\quad \end{aligned}$	$\begin{aligned} & 1 \times(0.5 \ldots 2.5), 2 \times(0.5 \ldots 1.0) \\ & 20 \ldots 12 \\ & 7 \\ & \text { M3 } \\ & 0.5 \ldots 0.6 \\ & 4.5 \ldots 5.3 \end{aligned}$

1) These products were built as Class A devices. The use of these devices in residential areas could result in radio interference. In this case the may be required to introduce additional damping measures.

Solid-State Relays

3RF22 Solid-state relays - technical data

Type		3RF22 ..-.AB. 5	3RF22 ...-AC. 5
Main circuit			
Controlled phases		Two-phase	Three-phase
Rated operational voltage U_{e}	V	$48 . . .600$	$48 . . .600$
- Operating range	V	40 ... 660	$40 . . .660$
- Rated frequency	Hz	$50 / 60 \pm 10$ \%	$50 / 60 \pm 10 \%$
Rated insulation voltage U_{i}	V	600	600
Rated impulse withstand voltage $U_{\text {imp }}$	kV	6	6
Blocking voltage	V	1200	1200
Rage of voltage rise	V/us	1.000	1.000

The heat transfer of the solid-state relays has been considerably improved.
Please note the highlighted values when dimensioning the heat sink.

Type	$\begin{aligned} & \boldsymbol{I}_{\max }^{\mathbf{1}} \\ & \text { at } R_{\text {thha }} / T_{\mathrm{u}}=40^{\circ} \mathrm{C} \end{aligned}$		I_{e} acc. to IEC 60947-4-3 at $R_{\text {thha }} / T_{\mathrm{u}}=40^{\circ} \mathrm{C}$		I_{e} acc. to UL/CSA at $R_{\text {thha }} / T_{\mathrm{u}}=50^{\circ} \mathrm{C}$		Power loss at $I_{\text {max }}$ W	Minimum load current A	Max. off-state current mA
	A	K/W	A	K/W	A	K/W			
Main circuit									
$\begin{aligned} & \text { 3RF2230-1 AB.. } \\ & \text { 3RF2230-2AB.. } \\ & \text { 3RF2230-3AB.. } \end{aligned}$	30	0.80	$\begin{aligned} & 30 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.80 \\ & 1.36 \\ & 0.80 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.65 \\ & 1.15 \\ & 0.65 \\ & \hline \end{aligned}$	81	0.5	10
$\begin{aligned} & \hline \text { 3RF2255-1AB.. } \\ & \text { 3RF2255-2AB.. } \\ & \text { 3RF2255-3AB.. } \end{aligned}$	55	0.25	$\begin{aligned} & 50 \\ & 20 \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.35 \\ & 1.83 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25 \\ & 1.58 \\ & 0.15 \\ & \hline \end{aligned}$	151	0.5	10
$\begin{aligned} & \text { 3RF2230-1AC.. } \\ & \text { 3RF2230-2AC.. } \\ & \text { 3RF2230-3AC.. } \end{aligned}$	30	0.45	$\begin{aligned} & 30 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.86 \\ & 0.45 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.72 \\ & 0.35 \\ & \hline \end{aligned}$	122	0.5	10
$\begin{aligned} & \hline \text { 3RF2255-1AC.. } \\ & \text { 3RF2255-2AC.. } \\ & \text { 3RF2255-3AC.. } \end{aligned}$	55	0.14	$\begin{aligned} & 50 \\ & 20 \\ & 55 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 1.19 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 55 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 1.02 \\ & 0.10 \end{aligned}$	226	0.5	10

1) The current $I_{\max }$ provides information about the performance of the
solid-state relay. The actual permitted rated operational current I_{e} can be
smaller depending on the connection method and cooling conditions.

Note:
The required heat sinks for the corresponding load currents can be determined from the characteristic curves (see page 8/49, "More information"). The minimum thickness values for the mounting surface must be observed.

Type	Rated impulse withstand capacity $I_{\text {tsm }}$	I^{2} t value
	A	$\mathrm{A}^{2} \mathrm{~s}$
Main circuit		
3RF22 30-...5	300	450
3RF22 55-...5	600	1800

Type		3RF22..-.A.3.	3RF22..-.A.4.
Control circuit Method of operation	V	110	DC operation
Rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$	Hz	$50 / 60 \varnothing 10 \%$	$4 \ldots 30$
Rated frequency of the control supply voltage	V	121	--
Control supply voltage, max.	mA	15	30
Typical actuating current	V	90	30
Response voltage	V	<40	4
Drop-out voltage	ms	$40+$ max. one half-wave	1
Operating times - ON-delay - OFF-delay	ms	$40+$ max. one half-wave	$1+$ max. one half-wave

Solid-State Switching Devices

Solid-State Contactors

3RF23 Solid-state contactors- technical data

Technical specifications

Order No. 3RF23 ..-.A... 3RF23 ..-.B... 3RF23 ..-C... 3RF23 ..-.D...

General data
Ambient temperature

during operation, derating at $40^{\circ} \mathrm{C}$ when stored	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -55 \ldots+80 \end{aligned}$		
Site altitude	m	0 ... 1000; derating from 1000		
Shock resistance acc. to IEC 60068-2-27	g / ms	15/11		
Vibration resistance acc. to IEC 60068-2-6	g	2		
Degree of protection		IP20		
Electromagnetic compatibility (EMC)				
Emitted interference acc. to IEC 60947-4-3 - Conducted interference voltage - Emitted high-frequency interference voltage		Class A for industrial applications	Class A for industrial applications; Class B for residential/business commercial areas up to 16 A , AC51 Low Noise	Class A for industrial applications
Noise immunity - Electrostatic discharge acc. to IEC 61000-4-2 (corresponds to degree of severity 3) - Induced RF fields acc. to IEC 61000-4-6 - Burst acc. to IEC 61000-4-4 - Surge acc. to IEC 61000-4-5	kV MHz kV kV	Contact discharge 4; air discharge 0.15 ... 80; $140 \mathrm{~dB} \mu \mathrm{~V}$; behavior crit 2/5.0 kHz; behavior criterion 1 Conductor - ground 2; conductor -	8; behavior criterio rion 1 conductor 1; beha	$\text { n } 2$ ior criterion 2

Type		3RF23 ..-1....	3RF23 ..-2....	3RF23 ..-3....
General data				
Connection technique		Screw connection	Spring-loaded connection	Ring cable connection
Main contact connectionConductor cross-section				
Solid	mm^{2}	$2 \times(1.5 \ldots 2.5), 2 \times(2.5 \ldots 6)$	$2 \times(0.5 \ldots 2.5)$	-
Finely stranded with end sleeve	mm^{2}	$2 \times(1.5 \ldots 2.5), 2 \times(2.5 \ldots 6), 1 \times 10$	$2 \times(0.5 \ldots 1.5)$	-
Finely stranded without end sleeves	mm^{2}		$2 \times(0.5 \ldots 2.5)$	-
Solid or stranded AWG conductors	AWG	$2 \times(14 \ldots 10)$	$2 \times(18 . . .14)$	-
Insulation stripping length	mm	10	10	-
Terminal screw		M 4	-	M 5
- Tightening torque	Nm	$2 . . .2 .5$	-	$2 . . .2 .5$
- Tightening torque	lb.in	7 ... 10.3	-	7 ... 10.3
Cable lug				
- DIN		-	-	$\begin{aligned} & \text { DIN 46234 } \\ & -5-2.5,-5-6,-5-10,-5-16,-5-25 \end{aligned}$
- JIS		-	-	JIS C 2805 R 2-5, 5.5-5, 8-5, 14-5
Auxiliary/control contact connections				
Conductor cross-section	mm^{2}	$1 \times(0.5 \ldots 2.5) ; 2 \times(0.5 \ldots 1.0)$	$0.5 \ldots 2.5$	1x (0.5 ... 2.5); $2 \times(0.5 \ldots 1.0)$
	AWG	$20 \ldots 12$	$20 . . .12$	$20 . .12$
Insulation stripping length	mm	7	10	7
Terminal screw		M 3	-	M 3
- Tightening torque	Nm.	$0.5 \ldots . .6$	-	$0.5 \ldots 0.6$
	lb.in	4.5 ... 5.3	-	4.5 ... 5.3

Solid-State Contactors

3RF23 Solid-state contactors - technical data

Technical specifications

Type	Type current AC-51/performance capacity ${ }^{1}$)			Power loss at $I_{\text {max }}$	Minimum load current	Off-state current	Rated peak withstand current $I_{\text {tsm }}$	$I^{2} t$ value
	at $I_{\text {max }}$ at $40^{\circ} \mathrm{C}$	Acc. to IEC 60947-4-3 at $40^{\circ} \mathrm{C}$	Acc. to UL/CSA at $50^{\circ} \mathrm{C}$					
	A	A	A	W	A	mA	A	$A^{2} \mathrm{~S}$
Main circuit								
$\begin{aligned} & \text { 3RF2310-.AA. } 2 \\ & \text { 3RF2310-.AA. } 4 \\ & \text { 3RF2310-.AA. } 5 \end{aligned}$	10.5	7.5	9.6	11	0.1	10	200	200
3RF2310-.AA. 6							400	800
$\begin{aligned} & \text { 3RF2320-.AA. } 2 \\ & \text { 3RF2320-.AA. } 4 \\ & \text { 3RF2320-.AA. } 5 \\ & \text { 3RF2320-.AA. } 6 \end{aligned}$	20	13.2	17.6	20	0.5	10	600	1800
$\begin{aligned} & \text { 3RF2320-.CA. } 2 \\ & \text { 3RF2320-.CA. } 4 \end{aligned}$						25	600	1800
$\begin{aligned} & \text { 3RF2320-.DA. } 2 \\ & \text { 3RF2320-.DA. } 4 \end{aligned}$						10	1150	6600
$\begin{aligned} & \text { 3RF2330-.AA. } 2 \\ & \text { 3RF2330-.AA. } 4 \\ & \text { 3RF2330-.AA. } 5 \\ & \text { 3RF2330-.AA. } 6 \end{aligned}$	30	22	27	33	0.5	10	600	1800
3RF2330-.CA. 2						25	600	1800
3RF2330-.DA. 4		18.5	26	33	0.5	10	1150	6600
$\begin{aligned} & \text { 3RF2340-.AA. } 2 \\ & \text { 3RF2340-.AA. } 4 \\ & \text { 3RF2340-.AA. } 5 \end{aligned}$	40	33	36	44	0.5	10	1200	7200
3RF2340-.AA. 6							1150	6600
$\begin{aligned} & \text { 3RF2350-.AA. } 2 \\ & \text { 3RF2350-.AA. } 4 \\ & \text { 3RF2350-.AA. } 5 \\ & \text { 3RF2350-.AA. } 6 \end{aligned}$	50	36	45	54	0.5	10	1150	6600
$\begin{aligned} & \text { 3RF2370-.AA. } 2 \\ & \text { 3RF2370-.AA. } 4 \\ & \text { 3RF2370-.AA. } 5 \\ & \text { 3RF2370-.AA. } 6 \end{aligned}$	70	70	62	83	0.5	10	1150	6600

1) The type current provides information about the performance of the solid-
state contactor. The actual permitted rated operational current I_{e} can be smaller depending on the connection method and installation conditions.

Type	Type current AC-51/ performance capacity ${ }^{1)}$			Type current AC-15/ performance capacity ${ }^{1)}$		Power loss at $I_{\text {max }}$	Minimum load current	Off-state current	Rated peak withstand current $I_{\text {tsm }}$	$\boldsymbol{I}^{\mathbf{2}} \boldsymbol{t}$ value
	at $I_{\text {max }}$ at $40^{\circ} \mathrm{C}$	Acc. to IEC 60947-4-3 at $40^{\circ} \mathrm{C}$	Acc. to UL/CSA at $50^{\circ} \mathrm{C}$	$\begin{aligned} & 10 \times I_{\mathrm{e}} \\ & \text { for } \\ & 60 \mathrm{~ms} \end{aligned}$	Parameters					
	A	A	A	A		W	A	mA	A	$A^{2} \mathrm{~S}$
Main circuit										
$\begin{aligned} & \text { 3RF2310-.BA. } 2 \\ & \text { 3RF2310-.BA. } 4 \end{aligned}$	10.5	7.5	9.6	6	$\begin{aligned} & 12001 / \mathrm{h} \\ & 50 \% \text { ON period } \end{aligned}$	11	0.1	10	200	200
3RF2310-.BA. 6									400	800
3RF2320-.BA. 2 3RF2320-BA. 4 3RF2320-.BA. 6	20	13.2	17.6	12	$\begin{aligned} & 12001 / \mathrm{h} \\ & 50 \% \text { ON period } \end{aligned}$	20	0.5	10	600	1800
3RF2330-.BA. 2 3RF2330-BA. 4 3RF2330-.BA. 6	30	22	27	15	$\begin{aligned} & 12001 / \mathrm{h} \\ & 50 \% \text { ON period } \end{aligned}$	33	0.5	10	600	1800
$\begin{aligned} & \hline \text { 3RF2340-.BA. } 2 \\ & \text { 3RF2340-.BA. } 4 \end{aligned}$	40	33	36	20	$\begin{aligned} & 12001 / \mathrm{h} \\ & 50 \% \text { ON period } \end{aligned}$	44	0.5	10	1200	7200
3RF2340-.BA. 6									1150	6600
3RF2350-BA. 2 3RF2350-.BA. 4 3RF2350-BA. 6	50	36	45	25	$\begin{aligned} & 1200 \text { 1/h } \\ & 50 \% \text { ON period } \end{aligned}$	54	0.5	10	1150	6600
$\begin{aligned} & \hline \text { 3RF2370-.BA. } 2 \\ & \text { 3RF2370-.BA. } 4 \\ & \text { 3RF2370-.BA. } 6 \end{aligned}$	70	70	62	27.5	$\begin{aligned} & 12001 / \mathrm{h} \\ & 50 \% \text { ON period } \end{aligned}$	83	0.5	10	1150	6600

1) The type current provides information about the performance of the solidstate contactor. The actual permitted rated operational current I_{e} can be smaller depending on the connection method and installation conditions.

Solid-State Contactors

3RF23 Solid-state contactors - technical data

Fused design with semiconductor protection

 (similar to type of coordination "2") ${ }^{1)}$The semiconductor protection for the SIRIUS SC controlgear can be used with different protective devices. This allows protection by means of LV HRC fuses of operational class gL/gG or supplementary protectors. Siemens recommends the use of special SITOR semiconductor fuses. The table below lists the maximum permissible fuses for each SIRIUS SC control gear.

If a fuse is used with a higher rated current than specified, semiconductor protection is no longer guaranteed. However, smaller fuses with a lower rated current for the load can be used without problems.
For protective devices with operational class gL/gG and for SITOR full range fuses 3NE1, the minimum cross-sections for the conductor to be connected must be taken into account.

Order No.	All-range fuse LV HRC design gR/SITOR 3NE1	Semiconductor protection fuse Cylindrical design			Cable and line protection fuse				
		$10 \times 38 \mathrm{~mm}$ aR/SITOR 3NC1 0	$14 \times 51 \mathrm{~mm}$ aR/SITOR 3NC1 4	$22 \times 58 \mathrm{~mm}$ aR/SITOR 3NC2 2	design gL/gG 3NA	$\begin{aligned} & 10 \times 38 \mathrm{~mm} \\ & \mathrm{gL} / \mathrm{gG} 3 \mathrm{NW} \end{aligned}$	$14 \times 51 \mathrm{~mm}$ gL/gG 3NW	$\begin{aligned} & 22 \times 58 \mathrm{~mm} \\ & \mathrm{gL} / \mathrm{gG} 3 \mathrm{NW} \end{aligned}$	
$\begin{aligned} & \text { 3RF23 1.-.... } \\ & \text { 3RF23 } 14 \\ & \text { 3RF23 } 1 .-\ldots .6 \end{aligned}$	3NE1 813-0 3NE1 813-0 3NE1 813-0	$\begin{aligned} & \text { 3NC1 } 010 \\ & \text { 3NC1 010 } \\ & \text { 3NC1 } 010 \end{aligned}$	$\begin{aligned} & \text { 3NC1 } 410 \\ & \text { 3NC1 } 410 \\ & \text { 3NC1 } 410 \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 220 \\ & \text { 3NC2 } 220 \\ & \text { 3NC2 } 220 \end{aligned}$	3NA2 803 3NA2 801 3NA2 803-6	3NW6 001-1 3NW6 001-1	3NW6 101-1 3NW6 101-1		$\begin{aligned} & \text { 5SB1 } 41 \\ & \text { 5SB1 } 41 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 2.-.... } \\ & \text { 3RF23 } 2 .-. .4 \\ & \text { 3RF23 2.-... } 6 \end{aligned}$	3NE1 814-0 3NE1 814-0 3NE1 814-0	$\begin{aligned} & \text { 3NC1 020 } \\ & \text { 3NC1 020 } \\ & \text { 3NC1 020 } \end{aligned}$	$\begin{aligned} & \text { 3NC1 } 420 \\ & \text { 3NC1 } 420 \\ & \text { 3NC1 } 420 \end{aligned}$	3NC2 220 3NC2 220 3NC2 220	3NA2 807 3NA2 807 3NA2 807-6	3NW6 007-1 3NW6 005-1	3NW6 107-1 3NW6 105-1 -	3NW6 207-1 3NW6 205-1	$\begin{aligned} & \text { 5SB1 } 71 \\ & \text { 5SB1 } 71 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 3.-....2 } \\ & \text { 3RF23 } 3 .-. .4 \\ & \text { 3RF23 } 3 .-\ldots .6 \end{aligned}$	3NE1 803-0 3NE1 803-0 3NE1 803-0	$\begin{aligned} & \text { 3NC1 032 } \\ & \text { 3NC1 032 } \\ & \text { 3NC1 032 } \end{aligned}$	3NC1 432 3NC1 432 3NC1 432	$\begin{aligned} & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \end{aligned}$	3NA2 810 3NA2 807 3NA2 807-6	-	3NW6 107-1 3NW6 105-1 -	3NW6 207-1 3NW6 205-1	$\begin{aligned} & \text { 5SB3 } 11 \\ & \text { 5SB3 } 11 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 4.-.... } \\ & \text { 3RF23 } 4 .-. .4 \\ & \text { 3RF23 4.-... } 6 \end{aligned}$	$\begin{aligned} & \text { 3NE1 802-0 } \\ & \text { 3NE1 802-0 } \\ & \text { 3NE1 802-0 } \end{aligned}$	-	$\begin{aligned} & \text { 3NC1 } 440 \\ & \text { 3NC1 } 440 \\ & \text { 3NC1 } 440 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 240 \\ & \text { 3NC2 } 240 \\ & \text { 3NC2 } 240 \\ & \hline \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6		3NW6 117-1 3NW6 112-1	3NW6 217-1 3NW6 212-1	$\begin{aligned} & \text { 5SB3 } 21 \\ & \text { 5SB3 } 21 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 5.-.... } 2 \\ & \text { 3RF23 5.-.. } 4 \\ & \text { 3RF23 5.-... } 6 \end{aligned}$	3NE1 817-0 3NE1 817-0 3NE1 817-0	-	$\begin{aligned} & \text { 3NC1 } 450 \\ & \text { 3NC1 } 450 \\ & \text { 3NC1 } 450 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \\ & \hline \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6	-	3NW6 117-1	3NW6 217-1 3NW6 210-1	$\begin{aligned} & \text { 5SB3 } 21 \\ & \text { 5SB3 } 21 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 7.-.... } 2 \\ & \text { 3RF23 7.... } 4 \\ & \text { 3RF23 7.-... } 6 \end{aligned}$	3NE1 820-0 3NE1 020-2 3NE1 020-2	-	-	$\begin{aligned} & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6	-		3NW6 217-1 3NW6 210-1	$\begin{aligned} & \text { 5SB3 } 31 \\ & \text { 5SB3 } 21 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 9.-....2 } \\ & \text { 3RF23 9.... } 4 \\ & \text { 3RF23 9.-... } 6 \end{aligned}$	3NE1 021-2 3NE1 021-2 3NE1 020-2	-	-	$\begin{aligned} & \text { 3NC2 } 200 \\ & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6	-		3NW6 217-1 3NW6 210-1	$\begin{aligned} & \text { 5SB3 } 31 \\ & \text { 5SB3 } 21 \end{aligned}$

1) Type of coordination "2" acc. to EN 60947-4-1:

In the event of a short-circuit, the controlgear in the load feeder must not endanger persons or the installation. They must be suitable for further operation. For fused configurations, the protective device must be replaced.

Solid-State Contactors

3RF24 Solid-state contactors - technical data

Overview

The complete units consist of a solid-state relay plus optimized heat sink, and are therefore ready to use. They offer defined rated currents to make selection as easy as possible. Depending on the version, current intensities of up to 50 A are achieved. Like all of our solid-state switching devices, one of their particular advantages is their compact and space-saving design. With their insulated mounting foot they can easily be snapped onto a standard mounting rail, or they can be mounted on carrier plates with fixing screws. This insulation enables them to be used in
circuits with protective extra-low voltage (PELV) or safety extra-low voltage (SELV) in building engineering. For other applications, such as for extended personal safety, the heat sink can be grounded through a screw terminal.

Version for resistive loads, "zero-point switching"
This standard version is often used for switching space heaters on and off.

Technical specifications

1) These products were built as Class A devices. The use of these devices in residential areas could result in radio interference. In this case the may be required to introduce additional damping measures.

Solid-State Switching Devices

Solid-State Contactors

3RF24 Solid-state contactors - technical data

Type		3RF24AB. 5	3RF24AC. 5
Controlled phases		Two-phase	Three-phase
Rated operational voltage U_{e}	V	$48 . . .600$	$48 . . .600$
- Operating range	V	$40 . . .660$	$40 . . .660$
- Rated frequency	Hz	$50 / 60 \pm 10 \%$	$50 / 60 \pm 10 \%$
Rated insulation voltage U_{i}	V	600	600
Rated impulse withstand voltage $U_{\text {imp }}$	kV	6	6
Blocking voltage	V	1200	1200
Rage of voltage rise	V/us	1000	1000

Type	Type current/	Rated operational current $I_{\text {e }}$		Power loss at $I_{\mathrm{AC}-51}$	Minimum load current	Max. off-state current	Rated peak withstand current $I_{\text {tsm }}$	$I^{2} t$ value
	$I_{\text {AC-51 }}$ at $40^{\circ} \mathrm{C}$	Acc. to IEC 60947-4-3 at $40^{\circ} \mathrm{C}$	Acc. to UL/CSA at $50^{\circ} \mathrm{C}$					
	A	A	A	W	A	mA	A	$A^{2} \mathrm{~S}$
Main circuit								
3RF2410-.AB. 5	10.5	7	7	23	0.1	10	200	200
3RF2420-.AB. 5	22	15	15	44	0.5	10	600	1800
3RF2430-.AB. 5	30	22	22	61	0.5	10	1200	7200
3RF2440-.AB. 5	40	30	30	80	0.5	10	1150	6600
3RF2450-.AB. 5	50	38	38	107	0.5	10	1150	6600
3RF2410-.AC. 5	10.5	7	7	31	0.5	10	300	450
3RF2420-.AC. 5	22	15	15	66	0.5	10	600	1800
3RF2430-.AC. 5	30	22	22	91	0.5	10	1200	7200
3RF2440-.AC. 5	40	30	30	121	0.5	10	1150	6600
3RF2450-.AC. 5	50	38	38	160	0.5	10	1150	6600

1) The type current provides information about the performance of the solidstate contactor. The actual permitted rated operational current I_{e} can be smaller depending on the connection method and installation conditions.

Type		3RF24 ..-... 4.	3RF24 ..-...5.
Control circuit			
Method of operation		DC operation	AC operation
Rated control supply voltage $\boldsymbol{U}_{\text {s }}$	V	4 ... 30	$190 \ldots 230$
Rated frequency of the control supply voltage	Hz	--	$50 / 60 \pm 10 \%$
Actuating voltage, max. - For actuating current	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \end{aligned}$	$\begin{aligned} & 253 \\ & 6 \end{aligned}$
Response voltage - For tripping current	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4 \\ & >3 \end{aligned}$	$\begin{gathered} 180 \\ >2 \\ \hline \end{gathered}$
Drop-out voltage	V	< 1	< 40
Operating times - ON-delay - OFF delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$1+$ max. one half-wave $1+$ max. one half-wave	40 + max. one half-wave 40 + max. one half-wave

Solid-State Contactors

3RF34 Solid-state contactors - technical data

Technical specifications

General technical specifications

Ambient temperature

- During operation, derating from $40^{\circ} \mathrm{C} \quad{ }^{\circ} \mathrm{C} \quad-25 \ldots+60$
- During storage ${ }^{\circ} \mathrm{C} \quad-55 \ldots+80$

Installation altitude	m	$0 \ldots 1000$; derating from 1000 on request
Shock resistance		

Shock resistance acc. to IEC 60068-2-27 g/ms $\quad 15 / 11$

Vibration resistance acc. to IEC 60068-2-6	g	2
Degree of protection	IP20	

Insulation strength at $50 / 60 \mathrm{~Hz} \quad$ V rms 4000
(main/control circuit to floor)
Electromagnetic compatibility (EMC)

- Emitted interference according to IEC 60947-4-2
- Conducted interference voltage
- Emitted, high-frequency interference voltage
- Interference immunity
- Electrostatic discharge
according to IEC 61000-4-2
(corresponds to degree of severity 3)
- Induced RF fields
according to IEC 61000-4-6
Contact discharge: 4; Air discharge: 8;
Behavior criterion 2

Mz $0.15 \ldots 80$

- Burst acc. to IEC 61000-4-4
- Surge according to IEC 61000-4-5²)

	Class A for industrial applications ${ }^{1)}$ Class A for industrial applications
kV	Contact discharge: 4; Air discharge: 8; Behavior criterion 2
MHz	$0.15 \ldots 80$; $140 \mathrm{~dB} \mu \mathrm{~V} ;$ behavior criterion 1
kV	2; at 5 kHz ; behavior criterion 2
kV	Conductor - Ground: 2; Conductor - Conductor: 1; Behavior criterion 2

Connection type

Operating devices
(1) Screw terminals 00 Spring-type terminals

Conductor cross-sections, main contacts

- Solid
$\left.\mathrm{mm}^{2} \quad 2 \times(1.5 \ldots 2.5)^{3}, 2 \times(2.5 \ldots 6)^{3}\right)$
$\mathrm{mm}^{2} 2 \times(1 \ldots 2.5)^{3)} ; 2 \times(2.5 \ldots 6)^{3)} ; 1 \times 10$
mm^{2}
Screw terminals
Standard screwdriver size 2 and Pozidriv 2
- Finely stranded with end sleeve
- Finely stranded without end sleeve
- AWG cables, solid or stranded
$\mathrm{mm}^{2} 1 \times(0.5 \ldots 2.5), 2 \times(0.5 \ldots 1.0) \quad 0.5 \ldots 2.5$
Conductor cross-sections, auxiliary/control contacts
- With/without end sleeve

AWG 20 ... 12

Permissible mounting positions

${ }^{1)}$ These products were built as Class A devices. The use of these devices in residential areas could result in radio interference. In this case these may be required to introduce additional interference suppression measures.
2) The following applies for reversing contactors: To maintain the values, a 3TX7 462-3L surge suppressor should be used between the phases L1 and L3 as close as possible to the reversing contactor.
${ }^{3)}$ If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified.

Solid-State Switching Devices

Solid-State Contactors

3RF34 Solid-state contactors - technical data

Overview

These two-phase controlled, instantaneous switching solid-state contactors in the insulting enclosure are offered in 45 mm width to 5.2 A - and in 90 mm width to 16 A . This means that it is possible to operate motors up to 7.5 kW .

Technical specifications

$\begin{aligned} & \text { Type } \\ & \hline \text { Fuseless design } \\ & \text { with 3RV2 motor starter protector, CLASS } 10 \end{aligned}$		3RF34 05-.BB..	3RF34 10-.BB..	3RF34 12-.BB..	3RF34 16-.BB..
Rated operational current $I_{\text {AC-53 }}{ }^{1)}$ according to IEC 60947-4-2 - At $40^{\circ} \mathrm{C}$ - UL/CSA, at $50^{\circ} \mathrm{C}$ - At $60^{\circ} \mathrm{C}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 5.2(4.5) \\ & 4.6(4.0) \\ & 4.2(3.5) \end{aligned}$	$\begin{aligned} & 9.2 \\ & 8.4 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 11.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 14 \\ & 12.5 \end{aligned}$
Power loss at $I_{\text {AC-53 }}$ - At $40^{\circ} \mathrm{C}$	W	10 (8)	16	22	28
Short-circuit protection with type of coordination "1" at an operational voltage of U_{e} to 440 V - Motor starter protector, type - Current I	kA	3RV20 11-1GA10 50	$\begin{aligned} & \text { 3RV20 11-1JA10 } \\ & 5 \end{aligned}$	3RV20 11-1KA10 5	$\begin{aligned} & \text { 3RV20 11-4AA10 } \\ & 3 \end{aligned}$

1) The reduced values in brackets apply to a directly mounted circuit breaker and simultaneous butt-mounting.

Type		3RF34 05-.BB. 4 3RF34 05-.BB. 6 3RF34 10-.BB..			3RF34 12-.BB. 4 3RF34 12-.BB. 6		3RF34 16-.BB..
Fused design with directly connected 3RB3 overload relay							
Rated operational current $I_{\text {AC-53 }}$ according to IEC 60947-4-2 - At $40^{\circ} \mathrm{C}$ - UL/CSA, at $50^{\circ} \mathrm{C}$ - At $60^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4 \\ & 3.6 \\ & 3.2 \end{aligned}$		$\begin{aligned} & 7.8 \\ & 7 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \\ & 7.6 \end{aligned}$		$\begin{aligned} & 11 \\ & 10 \\ & 9 \end{aligned}$
Power loss at $I_{\mathrm{AC}-53}$ - At $40^{\circ} \mathrm{C}$	W	7		13	16		18
Minimum load current	A	0.1		0.5			
Max. off-state current	mA	10					
Rated peak withstand current $I_{\text {tsm }}$	A	200	600	600	1200	1150	1150
$I^{2} t$ value	$A^{2} \mathrm{~s}$	200	1800	1800	7200	6600	6600

Type		3RF34 ..-.BB. 4	3RF34 ..-.BB. 6
Main circuit			
Controlled phases		2-phase	2-phase
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$	V AC	48 ... 480	48 ... 600
- Operating range	$V A C$	40 ... 506	40 ... 660
- Rated frequency	Hz	50/60 ± 10 \%	50/60 ± 10 \%
Rated insulation voltage U_{i}	V	600	600
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6	6
Blocking voltage	V	1200	1600
Rage of voltage rise	V/ $/ \mathrm{s}$	1000	1000

Solid-State Contactors

3RF34 Solid-state contactors - technical data

Type		3RF34 ...-BB0.	3RF34 ..-.BB2.
Control circuits	V	24 acc. to IEC $61131-2$	AC operation
Method of operation	Hz	--	$110 \ldots 230$
Rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$	V	30	$50 / 60 \pm 10 \%$
Rated frequency of the control supply voltage	mA	20	253
Control supply voltage, max.	V	15	15
Typical actuating current	V	5	90
Response voltage	ms	1	<40
Drop-out voltage	ms	$1+$ max. one half-wave	5
Operating times - ON-delay - OFF-delay			$30+$ max. one half-wave

Circuit diagrams

DC control supply voltage

AC control supply voltage

Solid-State Contactors

3RF34 Solid-state reversing contactors - technical data

Overview

The integration of four conducting paths to a reverse switch, combined in one enclosure makes this device a particularly compact solution. Compared to conventional systems, for which two contactors are required, it is possible to save up to 50%
width with the three-phase reversing contactors. Devices with 45 mm width cover motors up to 2.2 kW - and those with 90 mm width up to 3 kW .

Technical specifications

Type Fuseless design with 3RV2 motor starter protector, CLASS 10		3RF34 03-.BD. 4	3RF34 05-.BD. 4	3RF34 10-.BD. 4
Rated operational current $I_{\text {AC- } 53}{ }^{1)}$ according to IEC 60947-4-2 - At $40^{\circ} \mathrm{C}$ - UL/CSA, at $50^{\circ} \mathrm{C}$ - At $60^{\circ} \mathrm{C}$	A A A	$\begin{aligned} & 3.8(3.4) \\ & 3.5(3.1) \\ & 3.2(2.8) \end{aligned}$	$\begin{aligned} & 5.4(4.8) \\ & 5 \quad(4.3) \\ & 4.6(3.8) \end{aligned}$	$\begin{aligned} & 7.4 \\ & 6.8 \\ & 6.2 \end{aligned}$
Power loss at $I_{\mathrm{AC}-53}$ - At $40^{\circ} \mathrm{C}$	W	7 (6)	9 (8)	13
Short-circuit protection with type of coordination "1" at an operational voltage of U_{e} to 440 V - Motor starter protector, type - Current I_{q}	kA	$\begin{aligned} & \text { 3RV20 11-1FA10 } \\ & 50 \end{aligned}$	$\begin{aligned} & \text { 3RV20 11-1GA10 } \\ & 50 \end{aligned}$	3RV20 11-1JA10 10

1) The reduced values in brackets apply to a directly mounted circuit breaker and simultaneous butt-mounting.

Type		3RF34 03-.BD. 4	3RF34 05-.BD. 4	3RF34 10-.BD. 4
Fused design with directly connected 3RB3 overload relay				
Rated operational current $I_{\text {AC-53 }}$ according to IEC 60947-4-2 - At $40^{\circ} \mathrm{C}$ - UL/CSA, at $50^{\circ} \mathrm{C}$ - At $60^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.5 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 6.8 \\ & 6.2 \end{aligned}$
Power loss at $I_{\text {AC-53 }}$ - At $40^{\circ} \mathrm{C}$	W	6	8	16
Minimum load current	A	0.5		
Max. off-state current	mA	10		
Rated peak withstand current $I_{\text {tsm }}$	A	200	600	
$I^{2} t$ value	$A^{2} \mathrm{~S}$	200	1800	
Type		3RF34 ..-.BD. 4		
Main circuit				
Controlled phases		2-phase		
Rated operational voltage $\boldsymbol{U}{ }^{1 \text { I) }}$ - Operating range - Rated frequency	$\begin{aligned} & \text { V AC } \\ & \text { V AC } \\ & \mathrm{Hz} \end{aligned}$	$48 \ldots 480$ $40 \ldots 506$ $50 / 60 \pm 10 \%$		
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$	V	600		
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6		
Blocking voltage	V	1200		
Rage of voltage rise	V/us	1000		

1) To reduce the risk of a phase short circuit due to overvoltage, we recommend using a varistor type 3TX7 462-3L between the phases L1 and L3 and as close as possible to the switchgear.
We recommend a design with semiconductor protection as short-circuit protection.

Solid-State Switching Devices

Solid-State Contactors

3RF34 Solid-state reversing contactors - technical data

Type		3RF34 ..-. BD0.	3RF34 ..-.BD2.
Control circuits			
Method of operation		DC operation	AC operation
Rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$	V	24 acc. to IEC 61131-2	110 ... 230
Rated frequency of the control supply voltage	Hz	--	50/60 ± 10 \%
Control supply voltage, maximum	V	30	253
Typical actuating current	mA	15	10
Response voltage	V	15	90
Drop-out voltage	V	5	< 40
Operating times ${ }^{1)}$ - ON-delay - OFF-delay - Interlocking time	ms ms ms	$\begin{aligned} & 5 \\ & 5+\text { max. one half-wave } \\ & 60 \ldots 100 \end{aligned}$	$\begin{aligned} & 20 \\ & 10+\text { max. one half-wave } \\ & 50 \ldots 100 \end{aligned}$

1) Caution! Risk of phase short circuit in automatic mode.

The control inputs must not be actuated until after a delay time of 40 ms after the main voltage is applied

Circuit diagrams

DC control supply voltage

AC control supply voltage

Solid-State Switching Devices

Function Modules

General and technical data

Overview

Function modules for SIRIUS SC solid-state switching devices The following function modules are available:

A great variety of applications demand an expanded range of functionality. With our function modules, these requirements can be met really easily. The modules are mounted simply by clicking them into place; straight away the necessary connections are made with the solid-state relay or contactor. The plug-in connection to control the solid-state switching devices can simply remain in use.

- Converter
- Load monitoring
- Heating current monitoring
- Power control regulators
- Power controller

Technical specifications

Type Dimensions (W x H x D)		3RF29..-0EA.. $22.5 \times 84 \times 38$	3RF29..-0FA.. $22.5 \times 102 \times 39$	3RF29..-0GA. $45 \times 112 \times 44$	3RF29..-OHA. $45 \times 112 \times 44$	3RF29..-0JA.. $45 \times 112 \times 44$	3RF29..-0KA. $45 \times 112 \times 44$
Dimensions (W x H x D)	mm		$22.5 \times 102 \times 39$	$45 \times 112 \times 44$			

General data

Ambient temperature

- During operation, derating from $40^{\circ} \mathrm{C}$

During storage

- During storage ${ }^{\circ} \mathrm{C} \quad-25 \ldots+60$
Installation altitude m 0... 1 000; derating from 1000
Shock resistance acc. to IEC 60068-2-27 $\quad \mathrm{g} / \mathrm{ms} \quad 15 / 11$
Vibration resistance acc. to IEC 60068-2-6 $\quad g \quad 2$

Degree of protection
IP20

Electromagnetic compatibility (EMC)

- Emitted interference
- Conducted interference voltage acc. to IEC 60947-4-3
- Emitted, high-frequency interference voltage acc. to IEC 60947-4-3
- Interference immunity
- Electrostatic discharge acc. to IEC 61000-4-2 (corresponds to degree of severity 3)
- Induced RF fields according to IEC 61000-4-6
- Burst acc. to IEC 61000-4-4
- Surge acc. to IEC 61000-4-5

Connection type

Auxiliary/control contacts

- Conductor cross-section
- Stripped length
- Terminal screw
- Tightening torque

Connection type
Converters

- Diameter

Class A for industrial applications ${ }^{1)}$
Class B for residential, business and commercial applications
kV Contact discharge 4; air discharge 8; behavior criterion 2
$\mathrm{MHz} \quad 0.15 \ldots 80 ; 140 \mathrm{dBXV}$; behavior criterion 1
$2 \mathrm{kV} / 5.0 \mathrm{kHz}$; behavior criterion 2
Conductor - ground 2; conductor - conductor 1; behavior criterion 2
${ }^{\text {1) }}$ Note limitations for power controller and power regulator function modules. These modules were built as Class A devices. The use of these devices in residential areas could result in lead in radio interference. In this case it may be required to introduce additional interference suppression measures.

Type		3RF29..-0EA18	3RF29..-0FA08	3RF29..-0GA. 3	3RF29..-0GA. 6
Main circuit					
Rated operational voltage U_{e} - Operating range - Rated frequency	$\begin{aligned} & \text { VAC } \\ & \text { VAC } \\ & \mathrm{Hz} \end{aligned}$	$\begin{aligned} & --1) \\ & --- \\ & \text {-- } \end{aligned}$		$\begin{aligned} & 110 \ldots 230 \\ & 93.5 \ldots 253 \\ & 50 / 60 \end{aligned}$	$\begin{aligned} & 400 \ldots 600 \\ & 340 \ldots 660 \end{aligned}$
Rated insulation voltage U_{i}	V	--		600	
Voltage measuring - Measuring range	V	--		93.5 ... 253	$340 \ldots 660$
Mains voltage, fluctuation compensation	\%	--		20	

1) Versions are independent of the main circuit.

Type		$\begin{aligned} & \text { 3RF29..-0HA. } 3 \\ & \text { 3RF29..-0KA. } 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RF29..-0HA. } 6 \\ & \text { 3RF29..-OKA. } 6 \end{aligned}$	3RF29.-0JA. 3	3RF29.-0JA. 6
Main circuit					
Rated operational voltage $\boldsymbol{U}_{\mathbf{e}}$ - Operating range - Rated frequency	$\begin{aligned} & \text { VAC } \\ & \text { VAC } \\ & \mathrm{Hz} \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 93.5 \ldots 253 \\ & 50 / 60 \end{aligned}$	$\begin{aligned} & 400 \ldots 600 \\ & 340 \ldots 660 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 93.5 \ldots 253 \end{aligned}$	$\begin{aligned} & 400 \ldots 600 \\ & 340 \ldots 660 \end{aligned}$
Rated insulation voltage U_{i}	V	600			
Voltage measuring - Measuring range	V	93.5 ... 253	340 ... 660	93.5 ... 253	340 ... 660
Mains voltage, fluctuation compensation	\%	20			

3RF29 Function Modules

General and technical data

Technical specifications

Type Control circuit		3RF29..-...0.	3RF29..-... 1.	3RF29..-...3.
Method of operation		DC operation	AC/DC operation	AC operation
Rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$ Rated actuating current	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 24 \\ & 15 \end{aligned}$		110
Rated frequency of the control supply voltage Hz		--	50/60	
Actuating voltage, max.	V	30		121
Rated actuating current At maximum voltage	mA	15		
Response voltage - For operating current	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 15 \\ & 2 \end{aligned}$		90
Drop-out voltage	V	5		15

Type		3RF2906-0FA08	3RF2920-0FA08	3RF2920-0GA..	3RF2950-0GA..	3RF2990-0GA..
Current measurement						
Rated operational current I_{e}	A	6	20		50	90
Current measurement - Teach range - Measuring range - Minimum partial load current	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.25 \ldots .6 \\ & 0 \ldots . \ldots 6 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.65 \ldots 20 \\ & 0 \ldots .22 \\ & 0.65 \end{aligned}$	$0.56 \ldots 20$	$\begin{aligned} & 1.62 \ldots 50 \\ & 0 \ldots 55 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 2.93 \ldots 90 \\ & 0 \ldots .99 \\ & 2.9 \end{aligned}$
Number of partial loads		$1 . . .6$		1... 12		

Type		3RF2920-0HA..	3RF2950-0HA..	3RF2990-0HA..	3RF2916-0JA..	3RF2932-0JA..
Current measurement						
Rated operational current $I_{\text {e }}$	A	20	50	90	16	32
Current measurement - Teach range - Measuring range - Minimum partial load current	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 4 \ldots 20 \\ & 022 \\ & \text {-- } 22 \end{aligned}$	$\begin{aligned} & 10 \ldots 50 \\ & 0 . . .55 \end{aligned}$	$\begin{aligned} & 18 \ldots 90 \\ & 4 \ldots 99 \end{aligned}$	$\begin{aligned} & 0.42 \ldots 16 \\ & 0 \ldots 16 \\ & 0.42 \end{aligned}$	$\begin{aligned} & 0.8 \ldots 32 \\ & 0 \ldots 32 \\ & 0.8 \end{aligned}$
Number of partial loads		--			$1 . . .6$	

Type		3RF2904-0KA..	3RF2920-0KA..	3RF2950-0KA..	3RF2990-0KA..
Current measurement					
Rated operational current I_{e}	A	4	20	50	90
Current measurement - Teach range - Measuring range - Minimum partial load current	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.15 \ldots 4 \\ & 0 \ldots .4 \\ & -- \end{aligned}$	$\begin{aligned} & 0.65 \ldots 20 \\ & 0 \ldots .22 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 1.6 \ldots 50 \\ & 0 \ldots 55 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 2.9 \ldots 90 \\ & 0 \ldots 99 \\ & 2.9 \end{aligned}$
Number of partial loads		--	$1 . . .6$		

Semiconductor Relays and Contactors, Function Modules

Project planning aids

Characteristics

SIRIUS SC semiconductor relays
Dependence of the device current I_{e} on the ambient temperature T_{a} (Chart data for SIRIUS SC relays based on I max) SIRIUS SC semiconductor relay with 20 A type current (3RF21 20/3RF20 20) ${ }^{\text {1) }}$

SIRIUS SC semiconductor relay with 30 A type current (3RF21 30/3RF20 30)

SIRIUS SC semiconductor relay with 50 A type current (3RF21 50/3RF20 50)

1) Arrangement example for $I_{\mathrm{e}}=20 \mathrm{~A}$ and $T_{\mathrm{a}}=40 \mathrm{C}$:

The task is to find the thermal resistance $R_{\text {thha }}$ and the heat-sink overtemperature $d T_{\text {ha }}$. From the diagram on the left $->P_{\mathrm{M}}=28 \mathrm{~W}$, from the diagram on the right -> $R_{\text {thha }}=\mathbf{1 . 7} \mathrm{K} / \mathbf{W}$.

Semiconductor Relays and Contactors, Function Modules

Project planning aids

Dependence of the device current l_{e} on the ambient temperature T_{a} (Chart data for SIRIUS SC relays based on I max) SIRIUS SC semiconductor relay with 70 A type current (3RF21 70/3RF20 70)

SIRIUS SC semiconductor relay with 88 A type current (3RF21 90/3RF20 90)

SIRIUS SC semiconductor contactors

Derating curves
SIRIUS SC semiconductor contactor with 10 A type current (3RF23 10)

Semiconductor Relays and Contactors, Function Modules

Project planning aids

Derating curves

SIRIUS SC semiconductor contactor with 20 A type current (3RF23 20)

SIRIUS SC semiconductor contactor with 30 A type current (3RF23 30)

SIRIUS SC semiconductor contactor with 40 A type current (3RF23 40) ${ }^{1)}$

Ambient temperature T_{a} in ${ }^{\circ} \mathrm{C} \longrightarrow$
Device current I_{e} in A \longrightarrow

[^6]
Semiconductor Relays and Contactors, Function Modules

Project planning aids

Derating curves
SIRIUS SC semiconductor contactor with 50 A type current (3RF2350) ${ }^{\text {1) }}$

SIRIUS SC semiconductor contactor with 70 A type current (3RF23 70) ${ }^{\text {1) }}$

SIRIUS SC semiconductor contactor with 88 A type current (3RF23 90) ${ }^{1 \text { 1) }}$

[^7]
Solid-State Relays

3RF22 solid-state relays, 3-phase, 45 mm

Characteristic curves
Dependence of the device current I_{e} on the ambient temperature T_{a} (two-phase controlled)

Type current 30 A (3RF22 30-.AB..)

Solid-State Relays

Dependence of the device current I_{e} on the ambient temperature T_{a} (three-phase controlled)

Type current 30 A (3RF22 30-.AC..)

Type current 55 A (3RF22 55-.AC..)
Arrangement example
Given conditions: $I_{\mathrm{e}}=55 \mathrm{~A}$ and $T_{\mathrm{a}}=40 \mathrm{C}$.
The task is to find the thermal resistance $R_{\text {thha }}$ and the heat sink overtemperature $d T_{\text {ha }}$.
From the diagram on the left $\rightarrow P_{M}=227 \mathrm{~W}$,
from the diagram on the right $\rightarrow R_{\text {thha }}=0.09 \mathrm{~K} / \mathrm{W}$.

This results in:
$d T_{\text {ha }}=R_{\text {thha }} \times \mathrm{PM}=0.09 \mathrm{~K} / \mathrm{W} \times 227 \mathrm{~W}=20.4 \mathrm{~K}$.
At $d T_{\text {ha }}=20.4 \mathrm{~K}$ the heat sink must therefore have an $R_{\text {thha }}=0.09 \mathrm{~K} / \mathrm{W}$.

Solid-State Switching Devices

Solid-State Contactors

Characteristic curves

Derating curves, two-phase controlled

Type current 10.5 A (3RF24 10-.AB..)

Type current 20 A (3RF24 20-.AB..)

Type current 30 A (3RF24 30-.AB..)

Solid-State Contactors

Type current 40 A (3RF24 40-.AB..) ${ }^{1)}$

Type current $50 \mathrm{~A}(3 R F 24 \text { 50-. AB.. })^{1)}$
$\begin{array}{ll}\text { _ — } & I_{\max } \text { Thermal limit current for individual mounting } \\ I_{\max } \text { Thermal limit current for side-by-side mounting } \\ \text { — — - } & I_{\mathrm{IEC}} \text { Current acc. to IEC 947-4-3 for individual mounting } \\ I_{\mathrm{IEC}} \text { Current acc. to IEC 947-4-3 for side-by-side mounting }\end{array}$

1) Identical current/temperature curves for stand-alone and side-by-side installation.

Solid-State Switching Devices

Solid-State Contactors

Derating curves, three-phase controlled

Type current 10.5 A (3RF24 10-.AC..)

Type current 20 A (3RF24 20-.AC..)

1) Identical current/temperature curves for stand-alone and side-by-side installation

Type current 30 A (3RF24 30-.AC..) ${ }^{1)}$

1) Identical current/temperature curves for stand-alone and side-by-side installation.

Solid-State Contactors

Type current 40 A (3RF24 40-.AC.. $)^{1)}$

Type current 50 A (3RF24 50-.AC.. $)^{1)}$

Solid-State Switching Devices

Solid-State Contactors

Maximum permissible switching frequency depending on the starting time t_{a} and the ON period t_{ED}

For motors with a starting current of 4 - to 7.2 times the rated current and with a full load

For motors with a starting current of 4 - to 7.2 times the rated current and with a 60% load

For motors with a starting current of up to 4 times the rated current and with a full load

For motors with a starting current of up to 4 times the rated current and with a 60% load

Solid-State Contactors

3RF34 solid-state reversing contactors, 3-phase
Maximum permissible switching frequency depending on the starting time t_{a} and the ON period t_{ED}

For motors with a starting current of 4 - to 7.2 times the rated current and with a full load

For motors with a starting current of 4- to 7.2 times the rated current and with a 60% load

For motors with a starting current of up to 4 times the rated current and with a full load

For motors with a starting current of up to 4 times the rated current and with a 60% load

Solid-State Switching Devices

Semiconductor Relays and Contactors, Function Modules

Dimensions

Dimension drawings

SIRIUS SC semiconductor relays
22.5 mm semiconductor relays

Screw connection 3RF21 .0-1AA.

Spring-loaded connection 3RF21 0-2AA. 3RF21 0-3AA

45 mm semiconductor relays
3RF20 .0-1AA.

Solid-State Relays

3RF22 solid-state relays, 3-phase, 45 mm

Dimensional drawings

Solid-state relays

Spring-loaded terminals

Screw terminal 3RF22 ..-1....

Spring-loaded terminals 3RF22 ..-2....

Ring terminal end connection 3RF22 ..-3....

Schematics

Two-phase controlled DC control supply voltage

Three-phase controlled DC control supply voltage

Solid-State Switching Devices

Semiconductor Relays and Contactors, Function Modules

Dimensions

Function modules for SIRIUS SC semiconductor switching devices

Basic load monitoring
3RF29 00-0FA08

Extended load monitoring

3RF29 .0-0GA..

Accessories for SIRIUS SC semiconductor switching devices
Terminal cover for SIRIUS semiconductor switching devices

Power controllers
3RF29 .0-0HA..

Solid-State Switching Devices

Semiconductor Relays and Contactors, Function Modules

Dimensions

SIRIUS SC semiconductor contactors
Semiconductor contactors with 10 A and 20 A type current

3RF23 10-..... 3RF23 20-.....
3RF23 10-1...
Spring-loaded connection 3RF23 10-2....
3RF2320-2....

Ring connection 3RF23 10-3... 3RF23 20-3....

Semiconductor contactors with 30 A type current

Screw connection
3RF23 30-1....

Ring connection 3RF23 30-3....

Semiconductor contactors with 40 A and 50 A type current

Screw connection 3RF23 40-1.... 3RF23 50-1....

Ring connection
3RF23 40-3....
3RF23 50-3....

Solid-State Switching Devices

Semiconductor Relays and Contactors, Function Modules

Dimensions

Semiconductor contactors with 70 A type current

Screw connection

3RF23 70-1....

Ring connection
3RF23 70-3....

Semiconductor contactors with 88 A type current
Ring connection
Screw connection
3RF23 90-1....

3RF23 90-3....

Solid-State Switching Devices

Solid-State Contactors

Dimensions

Dimensional drawings

Type current 10.5 A

Type current $20 \mathrm{~A} ; 30 \mathrm{~A}$ (2-phase controlled)

Solid-State Switching Devices

Solid-State Contactors

Dimensions

Type current 30 A (3-phase controlled); 40 A, 50 A

Schematics

Two-phase controlled
DC control supply voltage

Two-phase controlled AC control supply voltage

Three-phase controlled DC control supply voltage

Three-phase controlled
AC control supply voltage

Solid-State Switching Devices

Solid-State Contactors

Dimensions

Dimensional drawings

Screw terminals

Spring-loaded terminals

3RF24 1.-2....

Solid-State Switching Devices

Solid-State Contactors

Dimensions

Dimensional drawings

Screw terminals

Solid-State Switching Devices

Semiconductor Relays and Contactors, Function Modules

Wiring diagrams

Circuit diagrams

SIRIUS SC semiconductor relays

AC control version

SIRIUS SC semiconductor contactors
DC control version

AC control version

Function modules for SIRIUS SC semiconductor switching devices

1) Internal connection.
2) Straight-through transformer.

SIRIUS SC semiconductor relays
Typical circuit diagram

Semiconductor Relays and Contactors, Function Modules

Wiring diagrams
Function modules for SIRIUS SC semiconductor switching devices

Converters Typical circuit diagram

Extended load monitoring Typical circuit diagram

1) Internal connection.
2) Straight-through transformer.
3) PE/ground connection for semiconductor contactors according to installation regulations.
4) Connection of contact L / N to N conductor or a second phase according to the rated operational voltage of the function module.
5) In order to observe the limit values of the conducted interference voltage for generalized phase control, a choke rated at at least $200 \mu \mathrm{H}$ must be included in the load circuit.

Basic load monitoring Typical circuit diagram

Power controllers Typical circuit diagram

1) Internal connection to the solid state relay/contactor.
2) Straight-through
3) Make $\mathrm{PE} /$ ground connection according to installation regulations.
4) Connection of L / N contact with

- 3RF29 ..-0GA. 3 load monitoring on neutral conductor N (e.g. 230 V), 3RF29 ..-0GA. 6 load monitoring on a second phase (e.g. 400V).

5) Voltage detection not electically isolated ($3 \mathrm{M} \Omega$ per path).
6) Grounding of connection L- is recommended.
7) A200 $\mu \mathrm{H}$ choke must be used when operating with leading-edge phase in order to observe the limit values of the conducted interference voltage according to Class A.

Solid-State Contactors

3RF24 solid-state contactors, 3-phase

Schematics

Two-phase controlled,
DC control supply voltage

Two-phase controlled,
AC control supply voltage

Sample schematic

[^0]: 1) The type current provides information about the performance of the solidstate contactor. The actual permitted rated operational current I_{e} can be smaller depending on the connection method and installation conditions. For derating characteristic curves, see page $8 / 55$, "More information".
[^1]: 1) Please note: Use overvoltage protection device; max. cut-off-voltage 6000 V ; min. energy handling capability 100 J .
[^2]: 1) To order with mounted 3RF29 00-0RA88 cover, add -OKH0 to part number.
[^3]: * You can order this quantity or a multiple thereof.

[^4]: 1) Applies to the version "Low Power" 3RF21 ..-.AA..-OKNO
 2) Only for zero-point-switching devices.
[^5]: 1) Type of coordination "2" according to EN 60947-4-1:
 in the event of a short-circuit, the controls in the load feeder must not endanger persons or the installation. They must be suitable for further operation. For fused configurations, the protective device must be replaced.
 2) For use only with operational voltage U_{e} up to 400 V .
 ${ }^{3)}$ For use only with operational voltage U_{e} up to 506 V .
 ${ }^{4)}$ These fuses have a smaller rated current than the solid-state relays.
 3) These versions can also be protected against short-circuits with miniature circuit breakers as described in the notes on "SIRIUS Solid-State Contactors \boxtimes Special Version Short-Circuit Resistant"
[^6]: 1) Identical current/temperature curves for individual and side-by-side mounting.
[^7]: — $I_{\text {max }}$ Thermal limit current for individual mounting

 - - $I_{\max }$ Thermal limit current for side-by-side mounting
 —— $I_{\text {IEC }}$ Current acc. to IEC 947-4-3 for individual mounting
 — — — $I_{\text {IEC }}$ Current acc. to IEC 947-4-3 for side-by-side mounting

 1) Identical current/temperature curves for individual and side-by-side mounting.
