ELC-AN04ANNN
Analog to Digital Converter Module

Instruction Sheet

§ WARNING

- This Instruction Sheet only provides descriptions for electrical specifications, genera specifications, installation \& wiring, troubleshooting and peripherals. For more information about the optional peripherals, please see ELC Application Manual
- This is an OPEN TYPE Controller. The ELC should be kept in an enclosure away from airborne dust, humidity, electric shock risk and vibration. Also, it is equipped with protective methods such as some special tools or keys to open the enclosure, so as to avoid the hazard to user and the damage to the ELC. Do NOT touch terminals when power on.
- Never connect the AC main circuit power supply to any of the input/output terminals, as it will damage the ELC. Check all the wiring prior to power up. To avoid any electromagnetic nois make sure the ELC is properly grounded $\#$
- Warning - Do not disconnect while circuit is live unless area is known to be non-hazardous.
- Power, input and output (//O) wiring must be in accordance with Class 1, Div. 2 wiring methods Article 501-10(B)(1) of the National Electrical Code.
- Suitable for use in Class 1, Division 2, Groups A, B, C, D or Non-Hazardous locations only.
- Warning - Explosion hazard - Substitution of components may impair suitability for Class 1 Division 2.
- Warning - Explosion Hazard - Do not disconnect equipment unless power has been switched off or the area is known to be Non-Hazardous.

$1 \square$ INTRODUCTION

. 1 Model Explanation and Peripherals

Thank you for choosing Eaton Logic Controller (ELC) series products. The analog input module eceives external 4-point analog signal input (voltage or current) and transforms it into 14 bits digital signal. The analog input module of ELC-AN04ANNN can read/write the data of analog input module by using commands FROM / TO via ELC program. There are 49 CR (Control Register) in each module and there are 16 bits in each register
1.2 Product Profile and Outline

1. Status indicator (Power, RUN and ERROR)	2. Model Name
3. Extension unit clip	4. InputJoutput terminal

Warning: DO NOT wire to the No function terminal. Us Copper Conductor Only, $60 / 75^{\circ} \mathrm{C}$.

Note 1: Please isolate analog input and other power wiring.
Note 2 : If connect to current signal, please short circuit between $\mathrm{V}+$ and $\mathrm{I}+$ erminals.
Note 3: If noise is too loud, please connect $F G$ to grounding. Note 4: Please connect Θ terminal of power module and Θ terminal of analog input module to system earth point and make system earth point be grounding or connects to machine Note 5 : If wave of input terminal of loaded is too big that noise interferes wiring, please connect capacitance with

1.4 Terminal of analog module layout

ANO4ANNN	ANO2NANN	ANO4NANN	AN06AANN	PTO4ANNN	TCO4ANNN

2 STANDARD SPECIFICATIONS

FOUR CH. AID MODULE	OLTAGE INP	CURRENT INPUT
Power supply voltage	$24 \mathrm{VDC}(20.4 \mathrm{VDC}-28.8 \mathrm{VDC})(-15 \% \sim+20 \%)$	
Analog input channel	4 channel / each module	
Analog input range	$\pm 10 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$
Digital conversion range	$\pm 8,000$	$\pm 4,000$
Resolution	14 bits(1.Ls $=1.25 \mathrm{mV}$)	13 bits (1.ss=5 $\mu \mathrm{A}$)
Input impedance	$200 \mathrm{~K} \Omega$ and above	250』
Overall accuracy	$\pm 0.5 \%$ of full scale at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ $\pm 1 \%$ of full scale during $0 \sim 55^{\circ} \mathrm{C}\left(32 \sim 131^{\circ} \mathrm{F}\right)$	
Response time	$3 \mathrm{~ms} \times$ channels	
Isolation method	It has isolation between digital area and analog area. There is no isolation among channels.	
Isolation	Field to Digital Area: 500 V Field to Analog Area: 500 V Analog area to Digital Area: 500V Field to 24VDC: 500V	
Absolut input range	$\pm 15 \mathrm{~V}$	$1 \pm 32 \mathrm{~mA}$
Digital data format	2 's complementary of 16 -bit, 13 Significant Bits	
Average function	Yes (CR\#2~CR\#5 can be set and setting range is K1-K100)	
Self diagnose function	Upper and lower bound detection / channels	
Communication mode (RS-485)	MODBUS ASCII/RTU Mode. Communication baud rate of 4,800 / 9,600 / 19,200 / 38,400 / 57,600 / 115,200 bps. For ASCII mode, date format is 7 Bits, even, 1 stop bit ($7, \mathrm{E}, 1$). For RTU mode, date format is 8 Bits, even, 1 stop bit ($8, \mathrm{E}, 1$). The RS-485 is disabled when the ELC-ANO4ANNN is connected in series to an ELC.	
Connect to ELC in series	The input point of the first analog extension unit it connects from the near to the distant is from 0 to 7 . The Max. is 8 modules and it won't waste digital I/O point.	
Max. rated consuming power	$24 \mathrm{VDC}(20.4 \mathrm{VDC} \sim 28.8 \mathrm{VDC})(-15 \% \sim+20 \%)$, 2W, supply from external power	
Noise Immunity		

Grounding	The diameter of the grounding wire cannot be smaller than that of terminals 24 V and OV (f numerous ELCs are used at the same time, make sure that each ELC is grounded respectively to the ground poles)
Vibration/Shock Immunity	International Standard Regulations: IEC61131-2, IEC 68-2-6 (TEST Fc) IEC61131-2 \& IEC 68-2-27 (TEST Ea)
Operation/Storage Environment	Operation: $0^{\circ} \mathrm{C} \sim 55^{\circ} \mathrm{C}$ (temperature), $50 \sim 95 \%$ (humidity), pollution degree: 2 ; Storage: $-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ (temperature), $5 \sim 95 \%$ (humidity)
Agency Approvals	UL508 UL1604, Class1,Div2 Operating temperature code: T5 European community EMC Directive 89/336/EEC and Low Voltage Directive 73/23/EEC

ELC-AN04ANnN		EXPLANATION
\#34 H $4022 \mid \bigcirc$	System Version	
\#35-\#48 System used		
O means latched. X means not latched. R means can read data by using FROM command or RS-485. W means can write data by using TO command or RS-485 LSB (Least Significant Bit): 1. Voltage input: $1_{\mathrm{LSB}}=10 \mathrm{~V} / 8,000=1.25 \mathrm{mV}$. 2. Current input: $1_{\mathrm{LSB}}=20 \mathrm{~mA} / 4,000=5 \mu \mathrm{~A}$.		

xplanation:

1. CR\#1: CR\#1 is used to set 4 inner channels working mode of analog input module. Every channel has four modes to set and can be set individually. For example: if setting CH1 to mode 0 (b2~b0=000), CH2 to mode 1(b5~b3=001), CH3: mode2 (b8~b6=010), CH4: mode 3(b11~b9=011). It needs to set CR\#1 to H0688 and the upper bit (b12~b15) will reserved. The factory setting of CR\#1 is H0000.
2. $\mathrm{CR} \# 2 \sim \mathrm{CR} \# 5$: it is used to set average times of $\mathrm{CH} 1 \sim \mathrm{CH} 4$. Setting range is $\mathrm{K} 1 \sim \mathrm{~K} 100$ and factory setting is K10.
3. $\mathrm{CR} \# 6$ to $\mathrm{CR} \# 9$ are the average value that calculates according to the value that is set in CR\#2~CR\#5 (average time of CH1~CH4 input signal). For example, if CR\#2 (the average times of CH 1) is 10 , it will calculate the average of CH 1 input signal every 10 times.
4. CR\#12 ~ CR\#15: display present value of $\mathrm{CH} 1 \sim \mathrm{CH} 4$ input signal.
5. CR \#18~ CR \#21: the content is the value of adjusting OFFSET value of $\mathrm{CH} 1 \sim \mathrm{CH} 4$ if analog inpu voltage or current is 0 after it transfers from analog to digital. Voltage setting range: $-5 \mathrm{~V} \sim+5 \mathrm{~V}\left(-4,00 \mathrm{~L}_{\text {LsB }} \sim+4,000 \mathrm{LssB}\right.$. Current setting range: $-20 \mathrm{~mA} \sim+20 \mathrm{~mA}\left(-4,000_{\text {Lss }} \sim+4,000_{\text {LsB }}\right)$.
6. CR \#24~ CR \#27: means analog input voltage or current when conversion value from analog signal to digital is 4000 . Voltage setting range: $-4 \mathrm{~V} \sim+20 \mathrm{~V}\left(-3,200_{\text {LsB }} \sim+16,000_{\text {LsB }}\right)$. Current setting range: $-16 \mathrm{~mA} \sim+52 \mathrm{~mA}\left(-3,200_{\text {LsB }} \sim+10,400_{\text {LsB }}\right)$. But it needs to notice that GAIN VALUE OFFSET VALUE $=+800_{\text {LS8 }} \sim+12,000_{\text {LSB }}$ (voltage) or $+800_{\text {LS8 }} \sim 6,400_{\text {LSB }}$ (current). When this value under this range, the resolution of the input signal will be thin and the variation of value will be rger. When this value exceeds variation of value will be smaller
CR\#30 is fault code. Please refer to the following chart.

Fault description	Content	b15-b8	b7	b6	b5	b4	b3	b2	b1	b0
Power source abnormal	K1(H1)	Reserved	0	0	0	0	0	0	0	1
Analog input value error	K2(H2)		0	O	0	0	0	0	1	0
Setting mode error	K4(H4)		0	0	0	0	0	1	0	0
Offset/Gain error	K8(H8)		0	0	0	0	1	0	0	0
Hardware malunction	K16(H10)		0	0	0	1	0	0	0	0
Digital range error	K32(H20)		0	0	1	0	0	0	0	0
Average times setting error	K64(H40)		0	1	0	0	0	0	0	0
Command error	K128(H80)		1	0	0	0	0	0	0	0

8. CR\#31: it is used to set RS-485 communication address. Setting range is $01 \sim 255$ and factory setting is K 1 .
9. CR\#32 is used to set RS-485 communication baud rate: 4,800, 9,600, 19,200, 38,400, 57,600 115,200 bps. b0: $4,800 \mathrm{bps}$. b1: $9,600 \mathrm{bps}$. (factory setting) b2: $19,200 \mathrm{bps}$. b3: $38,400 \mathrm{bps}$. b4: 57,600 bps. b5: 115,200 bps. b6~b13: reserved. b14: exchange low and high byte of CRC check code. (only for RTU mode) b15=0: ASCII mode. b15=1: RTU mode. Communication format: ASCl mode is 7 Bit, even bit, 1 stop bit ($7, \mathrm{E}, 1$). Communication format of RTU mode is 8 Bit, even bit, 1 stop bit (8,E, 1).
10. CR\#33 is used to set the inner function priority. For example: characteristic register. Outpu latched function will save output setting in the inner memory before power loss.
11. CR\#35~ CR\#48: system used.
12. The corresponding parameters address $\mathrm{H} 4000 \sim \mathrm{H} 4022$ of $\mathrm{CR} \# 0 \sim \mathrm{CR} \# 34$ can provide user to read/write data by RS-485
a) Communication baud rate: $4,800,9,600,19,200,38,400,57,600,115,200 \mathrm{bps}$.
b) Communication format: ASCII mode is 7Bit, even bit, 1 stop bit ($7, \mathrm{E}, 1$). Communication format of RTU mode is 8 Bit , even bit, 1 stop bit ($8, \mathrm{E}, 1$).
c) Function code: 03 H -read data from register. 06 H -write a WORD into register. 10 H -write many WORDs into register.

4
ADJUST AID CONVERSION CHARACTERISTIC CURVE
4.1 Adjust A/D Conversion Characteristic Curve

Voltage input mode:

Mode 0 of CR\#1 GAIN=5V (4,000 Lss) , OFFSET=OV ($0_{\text {เss }}$) Mode 1 of CR\#1 GAIN=6V (4,800 1 ss) , OFFSET=2V
(1,600 ${ }_{\text {Lsb }}$)
Voltage input value when digital output is 4000. Setting range is $-4 \mathrm{~V} \sim+20 \mathrm{~V}(-3,200$ LsB ~ $+16,000_{\text {Lsb }}$)
Voltage input value when digital output is 0
Setting range: $-5 \mathrm{~V} \sim+5 \mathrm{~V}\left(-4,000_{\text {LSB }} \sim\right.$
$+4,000_{\text {LSB }}$)
Setting range is $+1 \mathrm{~V} \sim+15 \mathrm{~V}\left(+800_{\text {LsB }} \sim\right.$ $\left.+12,000_{\text {Lss }}\right)$

Current input mode

Mode 2 of CR\#1: G AIN $=20 \mathrm{~mA}\left(4,000_{\text {LSB }}\right)$, OFFSET $=4 \mathrm{~mA}$ ($800 \mathrm{Lss}^{\text {s }}$)

GAIN:
GAIN $=20 \mathrm{~mA}(4,000$ _ss $)$ OFFSET $=0 \mathrm{~mA}$ $\left(0_{\text {LsB }}\right)$.
Current input value when digital output is +4000 . Setting range is $-16 \mathrm{~mA} \sim+52 \mathrm{~mA}$ $\left(-3,200_{\text {LSB }} \sim+10,400_{\text {LSB }}\right)$
Current input value when digital output value is 0 . Setting range is $-20 \mathrm{~mA} \sim+20 \mathrm{~mA}$ $\left(-4,000_{\text {LsB }} \sim+4,000_{\text {LsB }}\right)$
Setting range is $+4 \mathrm{~mA} \sim+32 \mathrm{~mA}\left(800_{\mathrm{LsB}} \sim\right.$ $+6,400_{\text {LSs }}$)
The chart above is to adjust A/D conversion characteristic curve of voltage input mode and current input mode. Users can adjust conversion characteristic curve by changing OFFSET values (CR\#18~CR\#21) and GAIN values (CR\#24~CR\#27) depend on application
LSB(Least Significant Bit): 1 . voltage input: $1_{\mathrm{Lss}}=10 \mathrm{~V} / 8,000=1.25 \mathrm{mV}$.

$$
\text { 2. current input: } 1_{\text {LsB }}=20 \mathrm{~mA} / 4,000=5 \mu \mathrm{~A} \text {. }
$$

4.2 Program Example for Adjusting A/D Conversion Characteristics Curve Setting OFFSET value of CH 1 to $\mathrm{OV}\left(=K 0_{\mathrm{Lss}}\right)$ and GAIN value of CH 1 to $2.5 \mathrm{~V}\left(=\mathrm{K} 2,000_{\mathrm{Lss}}\right)$.

Wrting H0 to CR\#1 of analog input module no. 0 and set CH 1 to mode 0 (voltage input $-10 \mathrm{~V} \sim+10 \mathrm{~V}$)
2. Writing H 1 to $\mathrm{CR} \# 33$ and allow to adjust characters of CH 1 .
3. When XO switches from Off to $\mathrm{On}, \mathrm{KO}_{\mathrm{LsB}}$ of OFFSET value will be wrote in CR\#18 and $K 2,000_{\text {LsB }}$ of $G A I N$ value will be wrote in CR\#24.

5

1. Installation of the DIN rail

The ELC can be secured to a cabinet by using the DIN rail that is 35 mm high with a depth of 7.5 mm . When mounting the ELC on the DIN rail, be sure to use the end bracket to stop any side-to-side motion of the ELC, thus to reduce the chance of the wires being pulled loose. At the bottom of the ELC is a small retaining clip. To secure the ELC to the DIN rail, place it onto the rail and gently push up the clip.
To remove it, pull down the retaining clip and gently pull the ELC away from the DIN rail. As shown on the right: When installing the ELC, make sure that it is installed in an enclosure with sufficient space (as shown on the right) to its surroundings so as to allow heat dissipation.

2. Wiring

Notes:

1. Please use 22-16AWG $(1.5 \mathrm{~mm})$ wiring (either single or multiple core) for I / O wiring terminals. The specification for the terminals is as shown on the left. ELC terminal screws should be tightened to $1.95 \mathrm{~kg}-\mathrm{cm}(1.7 \mathrm{lb}-\mathrm{in})$. Use Copper Conductor Only, $60 / 75^{\circ} \mathrm{C}$.
2. I/O signal wires or power supply should not run through the same multi-wire cable or conduit.

6

INITIAL ELC START-UP
Lamp display:

1. When power is on, POWER LED will be lit and ERROR LED will be lit for 0.5 second.
2. When it is normal that POWER LED should be lit and ERROR LED should turn off. When power supply is lower than 19.5 V , ERROR LED will blink continuously till the power supply is higher than 19.5 V .
3. When it connected to ELC in series, RUN LED on ELC will be lit and A/D LED or D/A LED should blink.
4. After receiving the first RS-485 command during controlling by RS-485, A/D LED or D/A LED should blink.
5. After converting, ERROR LED should blink if input or output exceeds upper bound or lower than lower bound

Example

$\stackrel{\text { M1000 }}{ }{ }^{\text {l }}$	ко	ко	D0	K1
M1002				
$=$ H88 D0 $\square_{\text {TO }}$	ко	K1	H618	K1
то	ко	K2	K32	K2
- = H88 D \longmapsto FROM	ко	к6	D20	K4
End				

1. Reading the data of model type from extension module KO and distinguish if the data is H 8 (ELC-ANO4ANNN model type).
2. If the model type is ELC-ANO4ANNN, the setting input mode is $(\mathrm{CH} 1, \mathrm{CH} 3)=$ mode $0,(\mathrm{CH} 2$, $\mathrm{CH} 4)=\operatorname{mode} 3$.
3. Setting the average times of CH 1 and CH 2 are K 32 .
4. Reading the input signal average value of $\mathrm{CH} 1 \sim \mathrm{CH} 4$ (4 data) saving in D20~D23.

78 D
Operands:
m_{1} : Number for special $\begin{array}{llll}\boldsymbol{m}_{1} \text {. Number for special module }\left(\boldsymbol{m}_{1}=0 \sim 7\right) & \boldsymbol{m}_{2} \text { : Number of CR (Control Register) of special module } \\ \left(\boldsymbol{m}_{2}=0 \sim 48\right) \text { that will be read } & \text { D: Location to save read data } & \boldsymbol{n} \text { : Data words to read at one time (} \boldsymbol{n}\end{array}$ $=1 \sim\left(49-m_{2}\right)$)

ELC uses this instruction to read CR data of special modules.

API	Mnemonic			Operands				Function Write CR to Module		Controllers					
79	D	то	P	(m)	(m2	(s)	(B	PC		PA	PH

\mathbf{m}_{1} : Number of special module ($\boldsymbol{m}_{1}=0 \sim 7$) $\quad \boldsymbol{m}_{2}$: Number of CR (Control Register) of special module that will be written to ($m_{2}=0 \sim 48$) $\quad \mathbf{s}$: Data to write in CR $\quad n$: number of words to write one time (\mathbf{n} $=1 \sim\left(49-m_{2}\right)$)
Explanations:
ELC uses this instruction to write CR data of special modules.

