

The following excerpt are pages from the North American Product Technical Guide, Volume 2: Anchor Fastening, Edition 21.

Please refer to the publication in its entirety for complete details on this product including data development, product specifications, general suitability, installation, corrosion and spacing and edge distance guidelines. US&CA: <u>https://submittals.us.hilti.com/PTGVol2/</u>

To consult directly with a team member regarding our anchor fastening products, contact Hilti's team of technical support specialists between the hours of 7:00am – 6:00pm CST. US: 877-749-6337 or <u>HNATechnicalServices@hilti.com</u> CA: 1-800-363-4458, ext. 6 or <u>CATechnicalServices@hilti.com</u>

1-800-879-8000 www.hilti.com

3.3.20 KWIK-CON+ CONCRETE AND MASONRY SCREW

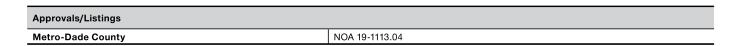
PRODUCT DESCRIPTION

KWIK-CON+ concrete and masonry screw anchors

Anchor System		Features and Benefits
	KWIK-CON+ fastener	 Zinc coating with proprietary finish that exceeds 1000 hours of protection from red rust per ASTM B117 Salt spray testing per ASTM G85 Coating is more durable than zinc plating alone Base material specific carbide tipped bits optimize performance in concrete or masonry Torx Hex washer head for fast secure installations into base material Torx or Phillips flat head for countersunk applications Load data available for installations in concrete masonry units (CMU) and brick
	KWIK-CON+ drive tool and installation accessories	Available in AISI Type 410 Stainless Steel

Uncracked

concrete



Grout-filled concrete masonry

Ungrouted concrete masonry

Brick

Anchor Fastening Technical Guide, Edition 21

Table 1 — Material Properties

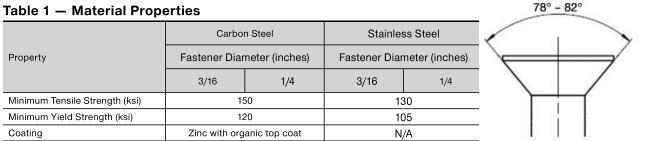


Figure 1 — Flathead KWIK CON+ Head Angle

Table 2 — Physical Dimensions

Chausetaviatia		Nominal anchor diameter (inches)							
Characteristic		3/16		1/4					
Head Style	Tapered Flat Head	Tapered Flat Head	5/16-in. Hex Washer	Tapered Flat Head	Tapered Flat Head	5/16-in. Hex Washer			
Internal recess	#3 Phillips	T-25 TORX	T-25 TORX	#3 Phillips	T-27 TORX	T-25 TORX			
Maximum Head Diameter (inches)	0.507	0.385	0.433	0.507	0.507	0.433			
Major Thread Diameter (inches)		0.217		0.283					
Minor Diameter (inches)		0.145			0.190				
Shank Diameter (inches)		0.170			0.224				

INSTALLATION

Table 3 — KWIK CON+ Installation Specifications

	0 stat	Nominal anchor diameter (inches)				
Setting information	Symbol	3	3/16	1/4		
Embedment (inches)	h _{nom}	1	1-3/4	1	1-3/4	
Nominal drill bit diameter (inches) ¹	d _{bit}	3	3/16		1/4	
Minimum fixture hole diameter (inches)	d _h		1/4	5/16		
Minimum hole depth (inches)	h	1-1/4	2	1-1/4	2	
Minimum member thickness (inches)	h _{min}	2-1/2	3-1/4	2-1/2	3-1/4	
Minimum anchor spacing (inches)	S _{min}	2-	1/4	2-	·1/2	
Critical anchor spacing (inches)	S _{cr}	3	4	3	4	
Minimum edge distance (inches)	C _{min}	1-	1/8	1-	-1/2	
Critical edge distance (inches)	C _{cr}	2-1/2	3-1/2	2-1/2	3-1/2	

1 Requires matched tolerance drill bit from Hilti, TKC drill bits for concrete, TKB drill bits for other materials.

Table 4 — Load adjustment factors for Hilti KWIK CON+ screw anchors in concrete

		-													
Load	Load adjustment factors for anchor spacing $f_{\rm A}$			Load adjustment factors for edge distance $f_{\rm R}$											
	Tension/Shear loads			on/Shear loads			Tension						Sh	ear	
Embedme	ent (inches)	1	1-3/4	1	1-3/4	Embedme	ent (inches)	1	1-3/4	1	1-3/4	1	1-3/4	1	1-3/4
Spac	ing (s)		Anchor d		diameter		Edge Distance Anchor Diameter				Anchor	Diameter			
in.	(mm)	3	/16	1	1/4	in.	(mm)	3	/16	1	1/4	3,	/16	-	1/4
2-1/4	(57)	0.80	0.80		1	1-1/8	(29)	0.80	0.80		1	0.30	0.30		
2-1/2	(64)	0.87	0.83	0.80	0.80	1-1/4	(32)	0.82	0.81			0.36	0.34		
2-3/4	(70)	0.93	0.86	0.90	0.86	1-1/2	(38)	0.85	0.83	0.80	0.80	0.49	0.41	0.30	0.30
3	(76)	1.00	0.89	1.00	0.89	1-3/4	(44)	0.89	0.85	0.85	0.83	0.62	0.48	0.48	0.39
3-1/4	(83)		0.91		0.91	2	(51)	0.93	0.87	0.90	0.85	0.75	0.56	0.65	0.48
3-1/2	(89)		0.94		0.94	2-1/4	(57)	0.96	0.89	0.95	0.88	0.87	0.63	0.83	0.56
3-3/4	(95)		0.97		0.97	2-1/2	(64)	1.00	0.92	1.00	0.90	1.00	0.71	1.00	0.65
4	(102)		1.00		1.00	3	(76)		0.96		0.95		0.85		0.83
						3-1/2	(89)		1.00		1.00		1.00		1.00

3.3.20

1 Reduction factors are multiplicative and linear interpolation between ${\rm s}_{\rm cr}$ and ${\rm s}_{\rm min}, {\rm c}_{\rm cr}$ and ${\rm c}_{\rm min}$ is permitted.

Anchor Fastening Technical Guide Edition 21 | 3.0 ANCHORING SYSTEMS | 3.3.20 KWIK-CON+ CONCRETE AND MASONRY SCREW Hilti, Inc. 1-800-879-8000 | en español 1-800-879-5000 | www.hilti.com | Hilti (Canada) Corporation | www.hilti.ca | 1-800-363-4458

DESIGN INFORMATION IN CONCRETE PER ALLOWALBLE STRESS DESIGN

Nominal			<i>f</i> ' _c = 2,000 psi		,000 psi	<i>f</i> ′ _c = 6,000 psi	
anchor diameter (in.)	Nominal embedment in. (mm)	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)
0.40	1	100	260	125	260	185	280
3/16	(25)	(0.4)	(1.2)	(0.6)	(1.2)	(0.8)	(1.3)
3/16	1-3/4	275	260	295	265	325	300
3/10	(44)	(1.2)	(1.2)	(1.3)	(1.2)	(1.5)	(1.3)
1 /4	1	190	325	240	390	275	540
1/4	(25)	(0.9)	(1.4)	(1.1)	(1.7)	(1.2)	(2.4)
1 /4	1-3/4	425	560	475	600	525	600
1/4	(44)	(1.9)	(2.5)	(2.1)	(2.8)	(2.3)	(2.7)

Table 5 — Tension and shear allowable loads in concrete ^{1, 2,3}

1 Screws installed in holes drilled with Hilti TKC carbide bits.

2 Allowable loads are based on a factor of safety of 4.3 Apply spacing and edge distance reduction factors in Table 4 as needed.

Table 6 — Tension and shear ultimate loads in concrete¹

		utilitate lea		0			
Nominal			f'_{c} = 2,000 psi		,000 psi	<i>f</i> ′ _c = 6,000 psi	
anchor diameter (in.)	Nominal embedment in. (mm)	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear Ib (kN)
2/16	1	400	1,050	500	1,050	750	1,150
3/16	(25)	(1.8)	(4.7)	(2.2)	(4.7)	(3.3)	(5.1)
2/16	1-3/4	1,100	1,050	1,180	1,070	1,300	1,200
3/16	(44)	(4.9)	(4.7)	(5.3)	(4.8)	(5.8)	(5.3)
1/4	1	760	1,300	970	1,575	1,100	2,175
1/4	(25)	(3.4)	(5.8)	(4.3)	(7.0)	(4.9)	(9.7)
1 /4	1-3/4	1,700	2,250	1,900	2,400	2,100	2,400
1/4	(44)	(7.6)	(10.0)	(8.5)	(11.3)	(9.34)	(10.7)

1 Screws installed in holes drilled with TKC bits.

Table 7 — Tension and shear allowable loads in grout-filled and hollow concrete masonry units (CMU)^{1,2,3,4,5}

Nominal anchor diameter (in.)	Nominal embedment in. (mm)	Tension Ib (kN)	Shear Ib (kN)
3/16	1	150	225
5/10	(25)	(0.7)	(1.0)
3/16	1-3/4	290	300
3/10	(44)	(1.3)	(1.3)
1/4	1	165	275
1/4	(25)	(0.7)	(1.2)
	1-3/4	310	400
1/4	(44)	(1.4)	(1.8)

1 All values for anchors installed in grout-filled or hollow concrete masonry (CMU) with a minimum prism strength of 1,500 psi. CMU may be lightweight, medium-weight or normal-weight conforming to ASTM C90.

2 Screws installed in holes drilled with TKB bits.

3 Allowable loads calculated using a factor of safety of 4.

4 Installation in the mortar joints is outside the scope of the published data.

5 C_{min}, S_{min} equals 4 inches

Table 8 — Tension and shear allowable loads in brick^{1,2,3,4,5}

Nominal anchor diameter (in.)	Nominal embedment in. (mm)	Tension Ib (kN)	Shear Ib (kN)
3/16	1 (25)	125 (0.6)	235 (1.0)
	· · ·	· · · ·	
3/16	1-3/4	350	300
	(44)	(1.6)	(1.3)
1/4	1	205	415
1/4	(25)	(0.9)	(1.8)
1 //	1-3/4	350	500
1/4	(44)	(1.6)	(2.2)

1 This test was performed on individual specimens of ASTM C62 common brick. Due to the wide variations encountered in the compressive strength of brick, these values should be considered guide values.

2 Allowable loads are based on a factor of safety of 4.

3 Installation in the mortar joints is outside the scope of the published data.

4 KWIK CON+ installed with TKB bits.

 $5 \quad C_{\text{min}}, \, S_{\text{min}} \, \text{equals} \, 4 \, \text{inches}$

Load values are for anchors installed a minimum of sixteen diameters on center and a minimum edge distance of sixteen diameters. Anchor spacing may be reduced to twelve diameters provided loads are reduced by 20 percent. Edge distance may be reduced to six diameters provided loads are reduced by 20 percent in tension and 70 percent in shear.

Combined shear and tension loading

 $\left(\frac{N_{d}}{N_{rec}}\right) + \left(\frac{V_{d}}{V_{rec}}\right) \leq 1.0$

INSTALLATION INSTRUCTIONS

Installation Instructions For Use (IFU) / Operating Instructions (OI) throughout the document are included with each product package. They can also be viewed or downloaded online at www.hilti.com. Because of the possibility of changes, always verify that downloaded IFU are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the (IFU)/Operating Instructions (OI).

ORDERING INFORMATION¹

KWIK-CON+ fasteners

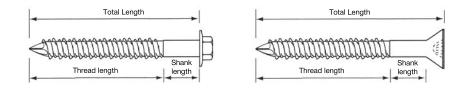
5/16 - in. Magnetic nut setter or T-25 TORX bit

Description	Diameter	Total length	Thread length	Shank length
KWIK-CON+ 3/16 X 1-1/4 THH	3/16	1-1/4	1-1/4	0
KWIK-CON+ 3/16 X 1-3/4 THH	3/16	1-3/4	1-3/4	0
KWIK-CON+ 3/16 X 2-1/4 THH	3/16	2-1/4	1-3/4	1/2
KWIK-CON+ 3/16 X 2-3/4 THH	3/16	2-3/4	1-3/4	1
KWIK-CON+ 3/16 X 3-1/4 THH	3/16	3-1/4	1-3/4	1-1/2

5/16 - in. Magnetic nut setter or T-25 TORX bit

Description	Diameter	Total length	Thread length	Shank length
KWIK CON+ 1/4 X 1-1/4 THH	1/4	1-1/4	1-1/4	0
KWIK CON+ 1/4 X 1-3/4 THH	1/4	1-3/4	1-3/4	0
KWIK CON+ 1/4 X 2-1/4 THH	1/4	2-1/4	1-3/4	1/2
KWIK CON+ 1/4 X 2-3/4 THH	1/4	2-3/4	1-3/4	1
KWIK CON+ 1/4 X 3-1/4 THH	1/4	3-1/4	1-3/4	1-1/2
KWIK CON+ 1/4 X 3-3/4 THH	1/4	3-3/4	1-3/4	2
KWIK CON+ 1/4 X 4 THH	1/4	4	1-3/4	2-1/4
KWIK CON+ 1/4 X 1-1/4 THH SS	1/4	1-1/4	1-1/4	0
KWIK CON+ 1/4 X 2-1/4 THH SS	1/4	2-1/4	1-3/4	1/2

۵) م


T-25 TORX bit

Description	Diameter	Total length	Thread length	Shank length
KWIK-CON+ 3/16 X 1-1/4 TFH	3/16	1-1/4	1-1/8	0
KWIK-CON+ 3/16 X 1-3/4 TFH	3/16	1-3/4	1-5/8	0
KWIK CON+ 3/16 X 2-1/4 TFH	3/16	2-1/4	1-3/4	1/2
KWIK-CON+ 3/16 X 2-3/4 TFH	3/16	2-3/4	1-3/4	7/8
KWIK-CON+ 3/16 X 3-1/4 TFH	3/16	3-1/4	1-3/4	1-3/8
KWIK-CON+ 3/16 X 3-3/4 TFH	3/16	3-3/4	1-3/4	1-7/8

T-27 TORX bit Description Diameter Total length Thread length Shank length KWIK CON+ 1/4 X 1-1/4 TFH 1/4 1-1/4 1-1/4 0 KWIK CON+ 1/4 X 1-3/4 TFH 1/4 1-3/4 1-3/4 0 KWIK CON+ 1/4 X 2-1/4 TFH 1/4 2-1/4 1-3/4 1/2 KWIK CON+ 1/4 X 2-3/4 TFH 1/4 2-3/4 1-3/4 1 KWIK CON+ 1/4 X 3-1/4 TFH 1/4 3-1/4 1-3/4 1-1/2 KWIK CON+ 1/4 X 4 TFH 1/4 4 1-3/4 2-1/4

1 All dimensions in inches

3.3.20

#3 Phillips bit

Description	Diameter	Total length	Thread length	Shank length
KWIK CON+ 3/16 X 1-1/4 PFH	3/16	1-1/4	1-1/4	0
KWIK CON+ 3/16 X 2-1/4 PFH	3/16	2-1/4	1-3/4	1/2
KWIK CON+ 3/16 X 3-1/4 PFH	3/16	2-3/4	1-3/4	1
KWIK CON+ 3/16 X 2-3/4 PFH	3/16	3-1/4	1-3/4	1-1/2
KWIK CON+ 3/16 X 2-3/4 PFH SS	3/16	1-1/4	1-1/4	0
KWIK CON+ 3/16 X 1-1/4 PFH SS	3/16	2-3/4	1-3/4	1

#3 Phillips bit

Description	Diameter	Total length	Thread length	Shank length
KWIK CON+ 1/4 X 1-1/4 PFH	1/4	1-1/4	1-1/4	0
KWIK CON+ 1/4 X 2-1/4 PFH	1/4	2-1/4	1-3/4	1/2
KWIK CON+ 1/4 X 2-3/4 PFH	1/4	2-3/4	1-3/4	1
KWIK CON+ 1/4 X 3-1/4 PFH	1/4	3-1/4	1-3/4	1-1/2
KWIK CON+ 1/4 X 3-3/4 PFH	1/4	3-3/4	1-3/4	2

KWIK-CON+ hex driver system

Qty / pack	
1	
1	
1	
1	
1	
1	
1	
	Qty / pack 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

KWIK-CON+ matched tolerance drill bits

Description
For 1/4-in. KWIK-CON+ Applications in normal-weight concrete
TKC Large Concrete Bit SDS+ Hex
TKC Large Concrete Bit Smooth Shank
For 1/4-in. KWIK-CON+ Applications in lightweight concrete, brick or CMU
TKB Large CMU Bit SDS+ Hex
TKB Large CMU Bit Smooth Shank
For 3/16-in. KWIK-CON+ Applications in normal-weight concrete
TKC Small Concrete Bit SDS+ Hex
TKC Small Concrete Bit Smooth Shank
For 3/16-in. KWIK-CON+ Applications in lightweight concrete, brick or CMU
TKB Small CMU Bit SDS+ Hex
TKB Small Block Bit Smooth Shank

4.0 REFERENCE 4.1 REFERENCE STANDARDS 4.1.1 ASTM STANDARDS FOR MATERIALS

Standard	Title
A36	Standard Specification for Structural Steel
A193	Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High- Temperature Service
A307	Standard Specification for Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength
A370	Standard Test Methods and Definitions for Mechanical Testing of Steel Products
A563	Standard Specification for Carbon and Alloy Steel Nuts
A615	Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
A653	Standard Specification for Steel Sheet, Zinc- Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process
B117	Standard Practice for Operating Salt Spray (Fog) Apparatus
B695	Specifications for Coatings of Zinc Mechanically Deposited on Iron and Steel
C31	Standard Practice for Making and Curing Concrete Test Specimens in the Field
C33	Standard Specification for Concrete Aggregates
C34	Standard Specification for Structural Clay Load- Bearing Wall Tile
C39	Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
C42	Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete
C62	Standard Specification for Building Brick (Solid Masonry Units Made from Clay or Shale)
C90	Standard Specification for Load-Bearing Concrete Masonry Units
C150	Standard Specification for Portland Cement

Standard	Title
C270	Standard Specification for Mortar for Unit Masonry
C330	Standard Specification for Lightweight Aggregates for Structural Concrete
C332	Standard Specification for Lightweight Aggregates for Insulating Concrete
C652	Standard Specification for Hollow Brick (Hollow Masonry Units Made from Clay or Shale)
C881	Standard Specification for Epoxy-Resin-Base Bonding Systems for Concrete
C882	Standard Test Method for Bond Strength of Epoxy-Resin Systems Used with Concrete by Slant Shear
C942	Standard Test Method for Compressive Strength of Grouts for Preplaced-Aggregate Concrete in the Laboratory
D638	Standard Test Method for Tensile Properties of Plastics
D648	Standard Test Method for Deflection Temperature of Plastics Under Flexural Load ir the Edgewise Position
D695	Standard Test Method for Compressive Properties of Rigid Plastics
E8	Standard Test Methods for Tension Testing of Metallic Materials
E119 Building Co	Standard Test Methods for Fire Tests of nstruction and Materials
E488	Standard Test Methods for Strength of Anchors in Concrete Elements
E1190	Standard Test Methods for Strength of Power-Actuated Fasteners Installed in Structural Members
E1512	Standard Test Methods for Testing Bond Performance of Bonded Anchors
F436	Standard Specification for Hardened Steel Washers
F593	Standard Specification for Stainless Steel Bolts Hex Cap Screws and Studs
F594	Standard Specification for Stainless Steel Nuts
F606	Standard Test Methods for Determining the Mechanical Properties of Externally Threaded Fasteners, Washers, Direct Tension Indicators, and Rivets
F844	Standard Specification for Washers, Steel, Plain (Flat), Unhardened for General Use
F1554	Standard Specification for Anchor Bolts, 36, 55 and 105-ksi Yield Strength
F1941-16	Electrodeposited Coatings on Mechanical Fasteners
G85	Standard Practice for Modified Salt Spray (Fog) Testing

4.1.2 ASTM PLATING STANDARDS

Standard	Title
A153	Standard Specification for Zinc Coating (Hot- Dip) on Iron and Steel Hardware
B633	Standard Specification for Electrodeposited Coatings of Zinc on Iron and Steel
B695	Standard Specification for Coatings of Zinc Mechanically Deposited on Iron and Steel

4.1.3 FEDERAL SPECIFICATIONS

Standard	Title
A-A-1922A	Shield, Expansion (Caulking Anchors, Single Lead)
A-A-1923A	Shield, Expansion (Lag, Machine and Externally Threaded Wedge Bolt Anchors)
A-A-1924A	Shield, Expansion (Self Drilling Tubular Expansion Shell Bolt Anchors)
A-A-55615	Shield, Expansion (Wood Screw and Lag Bolt Self-Threading Anchors)
A-A-55614	Shield, Expansion (Non-drilling Expansion Anchors)

4.1.4 ANSI STANDARDS

Standard	Title
B18.2.2	Nuts for General Applications: Machine Screw Nuts, Hex, Square, Hex Flange, and Coupling Nuts (Inch Series)
B18.22.1	Plain Washers (Inch Series)
B212.15	Carbide-Tipped Masonry Drills and Blanks for Carbide – Tipped Masonry Drills

Standard 61 Drinking Water System Components – Health Effects

4.2 TECHNICAL REFERENCES 4.2.1 METRIC CONVERSIONS AND EQUIVALENTS

The Metric Conversion Act of 1975, as amended by the Omnibus Trade and Competitiveness Act of 1988, establishes the SI or System International metric system as the preferred system of measurement in the United States.

Many products are currently manufactured and supplied in SI or hard metric sizes such as anchor bolts of 10 mm, 12 mm, 26 mm, etc. diameter. Where the inch-pound system is given or used, soft metric conversion can sometimes be used. This is not the case when selecting a drill bit for installing mechanical anchors, where it is critical to only use the specified Imperial or Metric diameter bit. The soft conversion diameters for anchor bolts is given by Table 1. Standard metric conversion factors commonly used for fastening products are given in Tables 2 and 3.

Table 1— Diameters

in.	Hard metric conversion mm	Use for soft metric mm
1/4	6.35	6
5/16	7.94	8
3/8	9.52	10
1/2	12.70	12
5/8	15.88	16
3/4	19.05	20
1	25.40	25
1-1/4	31.75	32

Table 2 — Imperial units to SI units

To convert	Into	Multiply by
Length		
inch (in.)	millimeter (mm)	25.4000
foot (ft)	meter (m)	0.3048
Area		
square inch (in²)	square millimeter (mm ²)	645.1600
square inch (in²)	square centimeter (cm ²)	6.4516
square foot (ft²)	square meter (m ²)	0.0929
Volume		
cubic inch (in³)	cubic centimeter (cm ³)	16.3871
cubic foot (ft ³)	cubic meter (m ³)	0.0283
gallon (US gal)	liter (L)	3.7854
Force		
pound force (lbf)	newton (N)	4.4482
pound force (lbf)	kilonewton (kN)	0.0044
Pressure		
pound/square inch (psi)	newton/square millimeter (N/mm ²)	0.0069
pound/square inch (psi)	mega pascal (MPa)	0.0069
Kip/square inch (ksi)	mega pascal (MPa)	6.8946
pounds/square foot (psf)	newton/square meter (N/m ²)	47.8801
Torque or Bending Mome	nt	•
foot pound (ft-lb)	newton meter (N/m)	1.3558
inch pound (in-lb)	newton meter (N/m)	0.1130
Diaphragm Shear		•
pounds/foot (plf)	newton/meter (N/m)	14.5939

Table 3 - SI units to Imperial units

To convert	Into	Multiply by
Length		
millimeter (mm)	inch (in.)	0.0394
meter (m)	foot (ft)	3.2808
Area		
square millimeter (mm ²)	square inch (in²)	0.0016
square centimeter (cm²)	square inch (in²)	0.1550
square meter (m²)	square foot (ft²)	10.7639
Volume		
cubic centimeter (cm ³)	cubic inch (in³)	0.0610
cubic meter (m ³)	cubic foot (ft ³)	35.3147
liter (L)	gallon (US gal)	0.2642
Force		
newton (N)	pound force (lbf)	0.2248
kilonewton (kN)	pound force (lbf)	224.8089
Pressure		
newton/square millimeter (N/mm²)	pound/square inch (psi)	145.0400
mega pascal (MPa)	pound/square inch (psi)	145.0400
mega pascal (MPa)	Kip/square inch (ksi)	0.1450
newton/square meter (N/m²)	pounds/square foot (psf)	0.0209
Torque or Bending Mome	nt	
newton meter (N/m)	foot pound (ft-lb)	0.7376
newton meter (N/m)	inch pound (in-lb)	8.8496
Diaphragm Shear		
newton/meter (N/m)	pounds/lineal foot (plf)	0.0685

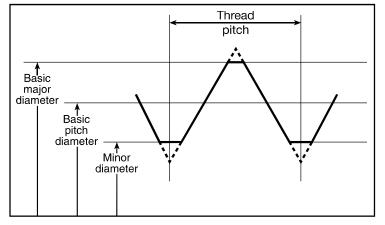
4.2.2 MECHANICAL PROPERTIES OF MATERIALS

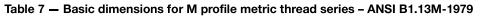
Grade	Nominal size	Min. yiel	d strength	Min. ultim	ate strength
designation	in.	ksi	(MPa)	ksi	(MPa)
ASTM A36	All	36	(248)	58	(400)
ASTM A193, B7	1/4 thru 2-1/2	105	(724)	125	(862)
AISI 1038 (As Rec'd)	1/4 thru 1-1/4	41	(282)	75	(517)
AISI 11L41	over 5/8 thru 1	75	(517)	90	(620)
AISI 1110 M (As Rec'd)	1/4 thru 5/8	44	(303)	53	(365)
AISI 12L14	5/8 thru 1-1/2	60	(414)	78	(538)
AISI 1010 (As Rec'd)	1/4 thru 3/4	44	(303)	53	(365)
ASTM A307	1/4 thru 4	-	-	60	(414)
ASTM A325	1/2 thru 1	92	(634)	120	(827)
	over 1 thru 1-1/2	81	(558)	105	(724)
ASTM A449	1/4 thru 1	92	(634)	120	(827)
	over 1 thru 1-1/2	81	(558)	105	(724)
ASTM A510	3/8 thru 3/4	70	(480)	87	(600)
SAE Grade 2	1/4 thru 3/4	57	(393)	74	(510)
	over 3/4 thru 1-1/2	36	(248)	60	(414)
SAE Grade 5	1/4 thru 1	92	(634)	120	(827)
	over 1 thru 1-1/2	81	(558)	105	(724)
SAE Grade 8	1/4 thru 1-1/2	130	(896)	150	(1034)
ISO 898-1 Class 5.8	All	58	(400)	72.5	(500)
ISO 898-1 Class 8.8	All	92.8	(640)	116	(800)

Table 4 — Mechanical properties of carbon steel

Table 5 — Mechanical properties of stainless steel

Grade	Nominal size	Yield	strength	Ultimate strength	
ASTM/AISI	in.	ksi	(MPa)	ksi	(MPa)
F593 / 304 / 316	1/4 thru 5/8	65	(448)	100	(689)
	3/4 thru 1-1/2	45	(310)	85	(586)
A193, B8 / 304 / 316	1/4 thru 1-1/2	30	(205)	75	(515)
A276 / 304	1/4 thru 9/16	76	(524)	90	(620)
	Larger than 9/16	64	(441)	75	(524)
A276 / 316	1/4 thru 9/16	76	(524)	90	(620)
	Larger than 9/16	64	(441)	75	(524)
A493 / 304	All	60	(414)	90	(627)
A582 / 303	All	60	(414)	100	(689)
DIN 267 Part 11, A4-70	All	65.3	(450)	101.5	(700)


4.2.3 BOLT THREAD DATA


Table 6 – Basic dimensions for UNC Coarse Thread Series – ANSI B1.1-1982

	Basic o	liameter	ter Threads		Area	
Nominal size	Major in. (D)	Minor in.	per Inch (n)	Nominal in ²	Minor ¹ in ²	Tensile stress ² in ²
No. 10	0.1900	0.1449	24	0.0284	0.0145	0.0175
No. 12	0.2160	0.1709	24	0.0366	0.0206	0.0242
1/4	0.2500	0.1959	20	0.0491	0.0269	0.0318
5/16	0.3125	0.2524	18	0.0767	0.0454	0.0524
3/8	0.3750	0.3073	16	0.1104	0.0678	0.0775
7/16	0.4375	0.3602	14	0.1503	0.0933	0.1063
1/2	0.5000	0.4167	13	0.1963	0.1257	0.1419
9/16	0.5625	0.4723	12	0.2485	0.1620	0.1819
5/8	0.6250	0.5266	11	0.3068	0.2017	0.2260
3/4	0.7500	0.6417	10	0.4418	0.3019	0.3345
7/8	0.8750	0.7547	9	0.6013	0.4192	0.4617
1	1.0000	0.8647	8	0.7854	0.5509	0.6057
1-1/8	1.1250	0.9704	7	0.9940	0.6929	0.7633
1-1/4	1.2500	1.0954	7	1.2272	0.8896	0.9691

Minor area = 0.7854 (D - 1.3/n)²
 Tensile stress area = 0.7854 (D - 0.9743/n)²

Figure 1 - Basic profile for screw threads

	Basic c	Basic diameter		Area		
Nominal size	Major mm (D)	Minor mm	pitch mm (P)	Nominal mm ²	Tensile stress ¹ mm ²	
M8	8	6.62	1.25	50.3	36.6	
M10	10	8.34	1.50	78.5	58.0	
M12	12	10.07	1.75	113.1	84.3	
M16	16	13.80	2.00	201.1	157.0	
M20	20	17.25	2.50	314.2	245.0	
M24	24	20.70	3.00	452.4	353.0	

1 Tensile stress area = $0.7854 (D - 0.9382 P)^2$

4.2.4 CONCRETE REINFORCING BAR DATA

Bar	Nominal		Nominal dimensions ²	
designation No.1	weight lb/ft	Diameter in.	Area in ²	Perimeter in.
3	0.376	0.375	0.11	1.178
4	0.668	0.500	0.20	1.571
5	1.043	0.625	0.31	1.963
6	1.502	0.750	0.44	2.356
7	2.044	0.875	0.60	2.749
8	2.670	1.000	0.79	3.142
9	3.400	1.128	1.00	3.544
10	4.303	1.270	1.27	3.990
11	5.313	1.410	1.56	4.430
14	7.65	1.693	2.25	5.32
18	13.60	2.257	4.00	7.09

Table 8 - ASTM basic dimensions for deformed steel bars for concrete reinforcement, Imperial units

Bar designation numbers are based on the number of eighths of an inch included in the nominal diameter. 1

2 The nominal dimensions of a deformed bar are approximate, being shown as equivalent to those of a plain round bar having the same weight per foot as the deformed bar.

Bar	Nominal		Nominal dimensions ²	
designation No.1	mass kg/m	Diameter mm	Area mm²	Perimeter mm
10	0.560	9.5	71	29.9
13	0.994	12.7	129	39.9
16	1.552	15.9	199	49.9
19	2.235	19.1	284	59.8
22	3.042	22.2	387	69.8
25	3.973	25.4	510	79.8
29	5.060	28.7	645	90.0
32	6.404	32.3	819	101.3
36	7.907	35.8	1006	112.5
43	11.38	43.0	1452	135.1
57	20.24	57.3	2581	180.0

 Bar designation numbers approximate the number of millimeters of the nominal diameter of the bar.
 The nominal dimensions of a deformed bar are approximate, being shown as equivalent to those of a plain round bar having the same mass per meter as the deformed bar.

Table 10 - CSA G30.12 & G30.16 basic dimensions for deformed steel bars for concrete reinforcement, SI units (Canada only)

Der	Nominal		Nominal dimensions ²	
Bar number ¹	mass kg/m	Diameter mm	Area mm²	Perimeter mm
10M	0.785	11.3	100	36
15M	1.570	16.00	200	50
20M	2.355	19.5	300	61
25M	3.925	25.2	500	79
30M	5.495	29.9	700	94
35M	7.850	35.7	1000	112
45M	11.775	43.7	1500	137
55M	19.625	56.4	2500	177

1

Bar numbers are based on the rounded off nominal diameter of the bars. Nominal dimensions are equivalent to those of a plain round bar having the same mass per meter as the deformed bar. 2

TERMS AND CONDITIONS OF SALE (U.S.)

US:

https://www.hilti.com/content/hilti/W1/US/en/company/legal-and-footer-information/terms-conditions/terms-and-conditions-of-sales.html

TERMS AND CONDITIONS OF SALE (CANADA)

Canadian English:

https://www.hilti.ca/content/hilti/W1/CA/en/company/legal-and-footer-information/terms-conditions/terms-and-conditions-of-sales.html

Canadian French:

https://www.hilti.ca/content/hilti/W1/CA/fr/entreprise/information-legale/ conditions-generales-ventes/terms-and-conditions-of-sales.html ÷

DESIGN MADE EASIER

Simplified design tables from Hilti

Hilti has made it even easier for engineers to design their anchoring applications. The simplified anchor design tables from Hilti combine current Strength Design design standards with the ease of the Allowable Stress Design (ASD) tabulated values.

	Effective	Tension – ΦN_n or N_r			Shear – ΦV_n or V_r					
Anchor Diameter in. (mm)	Embed. Depth in. (mm)	f′ _c = 2,500 psi (17.2 MPa) Ib (kN)	f´ _c = 3,000 psi (20.7 MPa) Ib (kN)	f´ _c = 4,000 psi (27.6 MPa) Ib (kN)	f′ _c = 6,000 psi (41.4 MPa) Ib (kN)	f´ _c = 2,500 psi (17.2 MPa) Ib (kN)	f´ _c = 3,000 psi (20.7 MPa) Ib (kN)	f´ _c = 4,000 psi (27.6 MPa) Ib (kN)	f' _c = 6,000 psi (41.4 MPa) Ib (kN)	f′ _c = 8,000 psi (55.2 MPa) Ib (kN)
	2-3/8	2,855	3,125	3,610	4,425	3,075	3,370	3,890	4,765	5,500
3/8	(60)	(12.7)	(13.9)	(16.1)	(19.7)	(13.7)	(15.0)	(17.3)	(21.2)	(24.5)
(9.5)	4-1/2	5,560	5,560	5,560	5,560	16,035	17,570	20,285	24,845	26,690
	(114)	(24.7)	(24.7)	(24.7)	(24.7)	(71.3)	(78.2)	(90.2)	(110.5)	(127.6)
	2-3/4	3,555	3,895	4,500	5,510	7,660	8,395	9,690	11,870	13,705
1/2	(70)	(15.8)	(17.3)	(20.0)	(24.5)	(34.1)	(37.3)	(43.1)	(52.8)	(61.0)
(12.7)	6	7,935	7,935	7,935	7,935	24,690	27,045	31,230	38,250	44,170
	(152)	(35.3)	(35.3)	(35.3)	(35.3)	(109.8)	(120.3)	(138.9)	(170.1)	(196.5)
	3-3/4	5,665	6,205	7,165	8,775	12,200	13,365	15,430	18,900	21,825
5/8 (15.9)	(95)	(25.2)	(27.6)	(31.9)	(39.0)	(54.3)	(59.5)	(68.6)	(84.1)	(97.1)
	7-1/2	14,950	14,950	14,950	14,950	34,505	37,800	43,650	53,455	61,725
	(191)	(66.5)	(66.5)	(66.5)	(66.5)	(153.5)	(168.1)	(194.2)	(237.8)	(274.6)

Profis Engineering software

Hilti PROFIS Engineering represents the next generation in anchor design software. PROFIS Engineering performs calculations for cast in place anchors, Hilti post-installed anchors in concrete, masonry, and concrete over metal deck. Ask your Hilti Field Engineer or visit Hilti Online for details.

Alternative installation methods are now included in PROFIS Engineering. Look for the Hilti SafeSetTM methods when designing your next project. Visit https://profis engineering.hilti.com/ to try it today.

In the US: Hilti, Inc. 7250 Dallas Parkway, Suite 1000, Plano, TX 75024 Customer Service: 1-800-879-8000 en español: 1-800-879-5000 Fax: 1-800-879-7000

www.hilti.com

Hilti is an equal opportunity employer. Hilti is a registered trademark of Hilti, Corp. ©Copyright 2021 by Hilti, Inc.

In Canada:

Hilti (Canada) Corporation 2360 Meadowpine Blvd. Mississauga, Ontario, L5N 6S2 Customer Service: 1-800-363-4458 Fax: 1-800-363-4459

www.hilti.ca

The data contained in this literature was current as of the date of publication. Updates and changes may be made based on later testing. If verification is needed that the data is still current, please contact the Hilti Technical Support Specialists at 1-800-879-8000. All published load values contained in this literature represent the results of testing by Hilti or test organizations. Local base materials were used. Because of variations in materials, on-site testing is necessary to determine performance at any specific site. Laser beams represented by red lines in this publication. Printed in the United States.