

How The Service Advisor Works

We know that your time is important! That's why the color-coding system in this catalog is designed to help you select products that fit your service needs. Products are marked to indicate the typical lead time for orders of 50 pieces or less.
Customer: How do I select my straight sections. covers, or fittings so that I get the quickest turnaround?
Service Advisor: Each part of our selection chart is shown in colors. If any section of a part number is a different color, the part will typically ship with the longer lead time represented by the colors.

- Green = Fastest shipped items
- Black = Normal lead-time items
- Red = Normally long lead-time items
Example: $\quad 34 \mathrm{~A} \quad$ VT $-24-244$

Part will have a normal lead time because of the VT bottom type.

Series 2, 3, 4, \& 5 Aluminum - Straight Sections

3" NEMA VE 1 Loading Depth
 4" Side Rail Height

Straight Section Part Numbering

See page APP-1 for additional rung options. *Special sizes available.

Series 2, 3, 4, \& 5 Aluminum - Straight Sections

3" NEMA VE 1 Loading Depth 4" Side Rail Height

Values are based on simple beam tests per NEMA VE 1 on 36 " wide cable tray with rungs spaced on 12 " centers. Cable trays will support without collapse a 200 lb . $(90.7 \mathrm{~kg})$ concentrated load over and above published loads. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0 , multiply the published load by 0.75 . To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable tray being installed.

Individual rungs will support without collapse a $200 \mathrm{lb} .(90.7 \mathrm{~kg})$ concentrated load applied at the mid-span of the rung, over and above the NEMA rated cable load with a 1.5 safety factor for highlighted NEMA spans and loads.

B-Line Series	Side Rail Dimensions	NEMA, CSA \& UL Classifications	Span ft	Load lbs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
24	4.	NEMA: 16A, 12C CSA: $277 \mathrm{~kg} / \mathrm{m} 3.0 \mathrm{~m}$ D-3m UL Cross-Sectional Area: 1.00 in 2	6	487*	0.001	$\begin{gathered} \text { Area }=1.05 \mathrm{in}^{2} \\ \mathrm{Sx}=1.34 \mathrm{in}^{3} \\ \mid \mathrm{x}=2.85 \mathrm{in}^{4} \end{gathered}$	1.8	725*	0.017	$\begin{aligned} & \text { Area }=6.77 \mathrm{~cm}^{2} \\ & \text { S } x=21.96 \mathrm{~cm}^{3} \\ & \mid x=118.63 \mathrm{~cm}^{4} \end{aligned}$
			8	284	0.003		2.4	422	0.055	
			10	181	0.008		3.0	270	0.136	
			12	126	0.016		3.7	187	0.279	
			14	93	0.030		4.3	138	0.618	
			16	71	0.052		4.9	105	0.883	

When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

* When using 18 " rung spacing, load capacity is limited to $394 \mathrm{lbs} / \mathrm{ft}(586.27 \mathrm{~kg} / \mathrm{m})$ for 30 " tray width and $325 \mathrm{lbs} / \mathrm{ft}(483.6 \mathrm{~kg} / \mathrm{m})$ for 36 " tray width.

B-Line Series	Side Rail Dimensions	NEMA, CSA \& UL Classifications	Span ft	Load lbs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
H24	$\overbrace{4.19}^{-1.75}$	NEMA: 20A CSA: $84 \mathrm{~kg} / \mathrm{m} 6.1 \mathrm{~m}$ D-6m UL Cross-Sectional Area: 1.00 in 2	10	225	0.006	$\begin{gathered} \text { Area }=1.32 \mathrm{in}^{2} \\ \mathrm{Sx}=1.57 \mathrm{in}^{3} \\ \mid \mathrm{x}=3.69 \mathrm{in}^{4} \end{gathered}$	3.0	330	0.106	$\begin{aligned} & \text { Area }=8.52 \mathrm{~cm}^{2} \\ & \text { Sx }=25.73 \mathrm{~cm}^{3} \\ & \mid x=153.59 \mathrm{~cm}^{4} \end{aligned}$
			12	156	0.013		3.7	226	0.222	
			14	115	0.023		4.3	171	0.400	
			16	88	0.040		4.9	129	0.693	
			18	70	0.064		5.5	103	1.093	
			20	56	0.098		6.1	83	1.682	

When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

B-Line Series	Side Rail Dimensions	NEMA, CSA \& UL Classifications	Span ft	Load lbs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
34		NEMA: 20B, 16C CSA: $112 \mathrm{~kg} / \mathrm{m} 6.0 \mathrm{~m}$ E-6m UL Cross-Sectional Area: 1.50 in 2	10	320	0.005	$\begin{gathered} \text { Area }=1.82 \mathrm{in}^{2} \\ S x=2.10 \mathrm{in}^{3} \\ \mid x=4.98 \mathrm{in}^{4} \end{gathered}$	3.0	476	0.077	$\begin{gathered} \text { Area }=11.74 \mathrm{~cm}^{2} \\ \mathrm{Sx}=34.41 \mathrm{~cm}^{3} \\ \mathrm{IX}=207.28 \mathrm{~cm}^{4} \end{gathered}$
			12	222	0.009		3.7	331	0.160	
			14	163	0.017		4.3	243	0.296	
			16	125	0.030		4.9	186	0.505	
			18	99	0.047		5.5	147	0.810	
			20	80	0.072		6.1	119	1.234	

When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment
of Inertia, $\mathrm{Sx}=$ Section Modulus.

