Selector Switch Units

UL (NEMA) Type 3, 3R, 4, 4X, 12, 13

- Two-, three- and four-position-maintained
- Non-illuminated and illuminated

| Two-Position Maint. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Switch Knob |

Three-Position Maint. Switch Knob	Operator Position ${ }^{(1)}$								Non-Illuminated		Illuminated-120V	ransformer
			9	Operator Action	Contact Type	Mounting A	Location B	Cam Code	Black Knob Catalog Number	Black Lever Catalog Number	Red Knob Catalog Number ${ }^{(3)}$	Red Lever Catalog Number ${ }^{(3)}$
	$\begin{aligned} & X \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \times \end{aligned}$	M	1N0	$\frac{1}{0} 0$		3	E34VHBK1-2X	E34VHBL1-2X	E34VHB120TER-2X	E34VHB120TFR-2X
					1N0		1					
	X	0	0		1N0	।		3	E34VHBK1-23X	E34VHBL1-23X	E34VHB120TER-23X	E34VHB120TFR-23X
	0	X	0			00						
	0	0	X		2NC	-0-0-0-80	-0ـب--1					
					(Series)							
					1N0		1					
							00					

Color Selection, Non-Illuminated

| Color | Code Letter | Color | Code Letter |
| :--- | :--- | :--- | :--- | :--- |
| Black | $\mathbf{1}$ | White | $\mathbf{5}$ |
| Red | $\mathbf{2}$ | | $\mathbf{6}$ |
| Green | $\mathbf{3}$ | Brae | $\mathbf{7}$ |
| Yellow | $\mathbf{4}$ | Crange | $\mathbf{8}$ |

Notes

For Light Unit Voltage Suffix and Knobs, Levers tables, see Page V7-T1-278.
Use NEMA 4X 10250T operators where exposed to ultraviolet light, see Pages V7-T1-182 to V7-T1-253.
(1) $X=$ closed circuit, $0=$ open circuit.
(2) $\mathrm{M}=$ Maintained.
(3) To order different type or color selector switch, substitute the underlined character with appropriate suffix code from the Color Selection table. Example: E34VFBK는ㅈ․

Selector Switch Selection

Cam and Contact Block Selection

Selector switches in their varied forms (two-position, three-position and fourposition) are a big factor contributing to the great flexibility of control that a well rounded line of "pushbuttons" can achieve. Because of their flexibility, they tend to cause difficulty with product selection and application. The following systematic approach should simplify that task.

Cam and contact block selection is better understood if you:

- Work with each incoming and outgoing wire/circuit separately.
- Recognize the terms NO and NC only identify the type of contact by its mode before mounting to the operator. The "X-O" chart (Page V7-T1-275) shows how that contact will act after assembly to the operator with the selected cam shape. $X=$ closed circuit, $\mathrm{O}=$ open circuit.
- Up to six NO or NC contacts may be mounted behind each plunger location for a total of twelve contacts. Single circuit contact blocks have only one plunger with the other side of the block "open." Therefore, single circuit contact blocks transmit motion to blocks behind them only for the position containing the circuit.
- Each cam has two separate lobes, each of which operates one of the two contact block plungers independently of each other. Those are identified as position A (locating nib side) and position B (opposite of locating nib). The position designations give direction in selecting and mounting of the contact blocks.

Contact Circuit Locations

Systematic Approach

Application: HAND-OFF-
AUTO selector switch. In this circuit, one incoming line is distributed to two other outgoing circuits by the switch. The two circuits can be looked at individually.

Step 1: Elementary

 Diagram.Construct on paper, or in your mind, a simple elementary diagram of the switching scheme as follows:

Step 2: "X-O" Pattern.
From the elementary diagram, you can construct an "X-O" diagram which describes when the contacts are to be closed (X) or open (O) in the various positions of the switch. The "X-O" for the HAND circuit looks like this:

In this circuit, you want a contact closed on the left (HAND) but open in the center and right.
HAND OFF AUTO
HAND OFF AUTO
1
$\times 1$
$\times 0$
1
$\times 1$
$\times 0$

For the AUTO circuit, the "X-O" diagram would look like this:

```
HAND OFF AUTO
        < ^ 1
        O O X
```

Putting them together, the complete " X - O " diagram is:

$$
\begin{array}{lll}
\text { xOO } \\
\text { OOX }
\end{array}
$$

Once the "X-O" diagram has been generated, the next step is to select the cam and contact block, or blocks, needed to perform the desired "X-O" functions. The selection tables on the following pages list the various types (shapes) of cams by number to choose from and the type of contact and position to achieve the function outlined in your "X-O" diagram.

Selector Switch Operators

UL (NEMA) Type 3, 3R, 4, 4X, 12, 13

Two-Position Knob Selector Switch	Operators with Knob Assembled		Black Knob Selector SwitchVertical Mounting	
	Positions	Operator Action		
			Cam Code ${ }^{3}$	Catalog Number ${ }^{4}$
	Two-position-60 ${ }^{\circ}$ throw		1	E34VFBK1
		$m \geqslant s$	1	E34VEBK1
	Three-position-60 ${ }^{\circ}$ throw	M	2	E34VGBK1
		M	3	E34VHBK1
		- M	2	E34VJBK1
			3	E34VKBK1
		-M	2	E34VLBK1
			3	E34VMBK1
		M	2	E34VNBK1
			3	E34VPBK1
	Four-position-40 ${ }^{\circ}$ throw		7	E34VTBK1

Key Operators

Three-Position Keyed Selector Switch	Key Operators with Cam and Cap					
	Positions	Operator Action	Cam Code ${ }^{(3)}$	Kеу Removal Positions ${ }^{5}$	Vertical Mounting Catalog Number	Horiz. Mounting Catalog Number
	Two-position-60 ${ }^{\circ}$ throw		1	1,2,3	E34KFB_	E34KFHB_
		$m \geqslant s$	1	2	E34KEB_	E34KEHB_
	Three-position-60 0° throw		2	1-7	E34KGB_	E34KGHB_
			3		E34KHB_	E34KHHB
			2	1,4,5	E34KJB_	E34KJHB
			3		E34KKB_	E34KKHB_
			2	4	E34KLB_	E34KLHB_
			3		E34KMB_	E34KMHB
			2	2,4,6	E34KNB_	E34KNHB
			3		E34KPB_	E34KPHB_
	Four-position-40 ${ }^{\circ}$ throw		7	7	E34KTB_	E34KTHB_

Notes

Use NEMA 4X 10250T operators where exposed to ultraviolet light, see Pages V7-T1-182 to V7-T1-253.
(1) $M=$ Maintained. $S=$ Spring return in direction of arrow (R).
(2) Field convertible to horizontal mounting.
(3) For selection of the proper cam and contact block to obtain the proper circuit sequence, see selection instructions and tables on Pages V7-T1-273 to V7-T1-275.
(4) For other colors of either the knob or lever, replace the underlined characters of the catalog number with the appropriate suffix code from Alternate Knob and Lever table on Page V7-T1-271. Example: E34VFBL2.
(5) Choose key removal position required for application from table on Page V7-T1-277. Add key removal code number to listed catalog number. Example: E34KFB2.

